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ABSTRACT 

Sensory primary cilium is a distinct signaling compartment 

by Rinzhin Tshering Sherpa 

 

The primary cilium is a solitary cellular organelle that protrudes from the apical cell 

membrane. Findings on cilia-dependent mechanosenstation have shown that the primary 

cilium acts as a transducer of fluid-shear stress into intracellular signaling. Over recent 

years, studies in primary cilia have intensified after determining a causal relationship 

between dysfunctional primary cilia and cystic diseases. Along with its mechanosensory 

function, the primary cilium houses a variety of receptors, ion channels and transporter 

proteins. Studies in cilia biology have shown that primary cilia are coordinators of 

signaling pathways such as Hedgehog (Hh), Wnt, and platelet-derived growth factor 

(PDGF) pathways during development and tissue homeostasis. The primary cilium has 

been established as a mechano, chemo- and osmosensing unit that transmits extracellular 

cues to the cell, which supports the importance of the primary cilium. As an important 

organelle involved in sensory functions and signal transductions, we encompass 

methodology for measuring cilia signaling along with a study of pH sensing function and 

cAMP signaling dynamics in the cilium. Defects in the structure of cilia or protein 

complexes located in the primary cilia cause a variety of diseases. With increasing the 

knowledge of ciliary biology, we can strategize approaches to repair defective cilia. Here 

we try to contribute to understanding the complex dynamic pathways of the cilia and 

point to potential pathways in regulating ciliary structure and function. 
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Chapter 1. Introduction 

 

Cilia are evolutionarily conserved organelles, extending out from the cell and shaped like a thin 

cylindrical structure with a diameter around 0.25 µm (S. Sorokin, 1962; S. P. Sorokin, 1968). They 

are found as projections from the surface of almost all cell types in the human body. From a 

compositional aspect, the cilium consists of a cytoskeletal scaffold, the axoneme containing nine 

peripheral microtubule doublets. Each doublet is made of two connected microtubules, a complete 

13-protofilament microtubule, named A tubule fused with an incomplete B tubule. The axoneme 

is covered with a ciliary membrane that contains receptors, ion channels and holds various other 

proteins within the cilioplasm (Goetz & Anderson, 2010; Janich & Corbeil, 2007; Pazour, Agrin, 

Leszyk, & Witman, 2005). Ciliogenesis or cilia formation starts from the basal body, which is 

derived from the centriole. As the cell enters G0 phase, the centrosome migrates towards the cell 

surface and attaches to a Golgi-derived vesicle (Lu et al., 2015; S. Sorokin, 1962). The initiation 

of axonemal nucleation and addition of tubulin dimers, delivered by intraflagellar transport (IFT) 

proteins, together with a concert of ciliary components extend the cilia (Taschner & Lorentzen, 

2016). The vesicle eventually fuses with the cell membrane, and the cilia protrude out of the cell, 

growing to several micrometers depending on the cell type.  

In terms of classification, the cilia can be broadly divided into two classes, i.e., motile and non-

motile or primary cilia. As apparent by the name, motile cilia can generate motion and are found 

in specialized cells, such as respiratory epithelia and Fallopian tubes among others, where they 

usually occur in a multiciliate form (Boon et al., 2014; Raidt et al., 2015). As a note, cilia and 

flagella are the same but were labeled as such before their structures could be studied in detail. 

The most apparent distinction lies in having one or two long flagella per cell compared to ciliated 

cells which have ~ 200-300 short cilia per cell. The primary cilium, on the other hand, exists as a 

single extension of cell that possesses it. In the motile cilium, there is an extra pair of centrally 

located microtubule doublets, thus designating it to have a 9 + 2 pattern (Zhang & Assouline, 

2007). On the other hand, the primary cilium lacks this central pair giving it a 9 + 0 

configuration.  
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All proteins that are found in the cilia are synthesized in the cytoplasm. From there, the proteins 

are shuttled and subsequently pass through a selective "barrier" located at the ciliary base (Gilula 

& Satir, 1972; Reiter, Blacque, & Leroux, 2012). This "barrier" consists of transition fibers 

projecting from the basal body. The transition fibers and adjoining ciliary necklace region make 

up the selective "ciliary pore complex" which are thought to be made of the original docking 

interactions between the centriole and the Golgi-derived vesicle (Garcia-Gonzalo et al., 2011; 

Takao, Wang, Boss, & Verhey, 2017). This transition zone, delineating the cytoplasm and 

cilioplasm, also organizes cargos designated for subsequent transport into the cilioplasm. Motor 

proteins such as kinesin and dynein carry the IFT bound ciliary components in an anterograde 

and retrograde direction, respectively.  

 

Motile cilia 

According to their specialization, the motile cilia show variable length, beat frequency and even a 

unique  9 + 0 arrangement in nodal cilia. The motile cilia contain dynein arms, that are permanently 

attached to the A tubule, and power axonemal beating through ATP hydrolysis. There are Nexin–

dynein regulatory complexes (N‐DRCs) that link adjacent doublets to regulate dynein-based 

motility (Heuser, Raytchev, Krell, Porter, & Nicastro, 2009). There are also connections between 

the central microtubule apparatus and the peripheral microtubules, known as radial spokes (Pigino 

et al., 2011).  

 

The motor protein and linkages form a basis for motile cilia movement, which can be described as 

the sliding of microtubules relative to one another (Castleman et al., 2009; Heuser et al., 2009; 

Olbrich et al., 2015; Pigino et al., 2011). The accepted model of ciliary movement proposes that 

dynein arms from the A tubule of one doublet are attached to the adjacent doublet’s B tubule. The 

ATPase domain in the dynein arm then undergoes successive binding and hydrolysis of adenosine 

triphosphate (ATP). This causes the dynein to release from its initial position on the B tubule and 

attach to a new position along the direction of movement toward the B tubule base, also called the 

minus end of the microtubule. Coordinated movement of the ciliary microtubules, in the case of 9 

+ 0 nodal cilia, produce a unidirectional beat while in multiciliate cells, the movement generated 
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is a wave-like motion. In the sperm flagella, notable differences occur in the distribution of the 

dynein arms and could be a possible factor in its unique beat pattern compared to regular ciliary 

beating (Faubel, Westendorf, Bodenschatz, & Eichele, 2016; Ma, Tian, Igarashi, Pazour, & Somlo, 

2013). In conclusion, a simple model might not account for the diversity of structure and motion 

patterns, but it does help us understand the critical components involved in cilia motility.  

 

Motile cilia are found in the epithelial surfaces of the respiratory tracts, the Fallopian tubes and 

the 9 + 0 nodal cilia, being present in the central nervous system. Disruptions to these nodal cilia 

lead to brain malformations and hydrocephalus (Banizs et al., 2005). In the airways, the wave-like 

motion generated by cilia expels mucus with trapped pathogens to be eliminated. Without this 

clearance, the trapped pathogens and particulate matter accumulate, increasing the risk of airway 

obstruction and other respiratory infections. Similarly, the multiciliate epithelia of Fallopian tubes 

generate a wave-like motion transport eggs to the uterus. With their specialized functions, even 

motile cilia have distinctive and unique properties that need to be studied comprehensively in order 

to understand the underlying basis of its function.  

 

Primary cilia 

Looking at the non-motile or primary cilium, it shares basic composition and structural features 

with the motile cilium. It has a similar arrangement of nine pairs microtubule doublets, anchored 

to the cell with a basal body, delineated by a transition zone and served by transport proteins to 

shuttle ciliary components. The similarities tend to end there and as the name implies the non-

motile cilium or primary cilium cannot generate its own movement. Some easily recognizable 

differences are the absence of ciliary components involved in cilia motility, such as the dynein 

arms bound to the peripheral doublets and associated proteins including the radial spokes. 

Compared to the motile cilia, the primary cilia are ubiquitous in most mammalian cells and project 

out to the lumen from the apical surface of polarized and differentiated cells.  

 

Initially, the primary cilia were thought to be remnants of unicellular ancestral origin, serving no 

function in the more evolved multicellular organism. Another thought was that the primary cilia 



www.manaraa.com

 

4 
 

could serve as a sensor and increasing evidence has supported the role of primary cilia as 

specialized sensory appendages as well as being involved in the coordination of signaling 

pathways. Primary cilia are responsible for a wide range of functions including transduction of 

mechanosensory stimuli, regulation of developmental pathways, and modulation of cell polarity 

as well as cell proliferation (Basten & Giles, 2013; Eggenschwiler & Anderson, 2007; Guemez-

Gamboa, Coufal, & Gleeson, 2014; Spassky et al., 2008; Veland, Awan, Pedersen, Yoder, & 

Christensen, 2010; Zhou, 2009).  

 

In the brain, the primary cilia play a critical role in the development and regulating neuronal cell 

signaling, migration, and differentiation (Banizs et al., 2005; Faubel et al., 2016; Spassky et al., 

2008). Studies have found that components of the Hedgehog pathway (Hh) localize in the ciliary 

compartment at different stages of pathway activation (Murdoch & Copp, 2010). Dysregulation of 

Hh signaling, due to defective proteins of the pathway results in hydrocephalus, corpus callosum 

defects, and similar manifestations of conditions that are observed in ciliopathies (Goetz & 

Anderson, 2010; Lehman & Michaud, 2008; Spassky et al., 2008; Toriello & Parisi, 2009). 

Ciliopathies include all inherited human disorders caused by both motile and primary cilia 

dysfunction (Mitchison & Valente, 2017; Waters & Beales, 2011). Primary cilia dysfunction 

affects the pancreas causing fibrotic deposition, dysplasia, and ductal cysts. Pancreatic 

development involves several pathways such as Shh and Wnt, which are dependent on the presence 

of a functioning primary cilium (Han et al., 2008; Lancaster, Schroth, & Gleeson, 2011). In 

addition, primary cilia in pancreatic ductal cells have been proposed to sense luminal flow and 

transduce flow-induced signals, similar to their counterpart in the renal epithelia and vascular 

endothelia (Abdul-Majeed, Moloney, & Nauli, 2012; Abdul-Majeed & Nauli, 2011a, 2011b; Cano, 

Sekine, & Hebrok, 2006; Mohieldin et al., 2016). The primary cilia on cholangiocytes also function 

as sensors to detect biliary flow and composition. Studies have shown that the cholangiocyte cilia 

respond to sensory stimuli by modulating intracellular calcium and cAMP (Gradilone et al., 2007; 

A. I. Masyuk et al., 2006). Impaired cilia result in the formation of abnormal bile ducts with 

excessive extracellular matrix deposition. In the skeletal system, ciliary defects can cause 

polydactyly and aberrant growth of the cartilage and bones (Malone et al., 2007; McGlashan, 

Haycraft, Jensen, Yoder, & Poole, 2007). 
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Many of these discoveries have been based on animal models, namely the hypomorphic mouse 

mutant Oak Ridge Polycystic Kidney (ORPK) (Lehman & Michaud, 2008; McGlashan et al., 

2007; Moyer et al., 1994; Murcia et al., 2000; Pazour et al., 2000; B K Yoder et al., 1995; Bradley 

K Yoder, Hou, & Guay-Woodford, 2002). The ORPK mice have mutations in the Tg737 gene, 

homologous to IFT88 which is a Chlamydomonas IFT protein (Pazour et al., 2000). Analysis of 

ORPK mouse showed that primary cilia are stunted, and the resulting aberrations of primary cilia 

based signaling contribute towards many of the abnormalities seen in the mutants. One of the most 

studies functional ciliary complexes is the mechanosensory polycystins (Nauli et al., 2003). 

Polycystin 1 (PC1) is a transmembrane glycoprotein has a large extracellular N-terminal domain 

which includes a G-protein coupled receptor proteolytic site (GPS) (Chae et al., 2006; Geng et al., 

1996; Nauli et al., 2008). In the cytoplasmic side, PC1 C-terminal forms a coiled-coiled domain 

through which it interacts with polycystin 2 (PC2), a transient receptor potential polycystic (TRPP) 

ion channel permeable to calcium ions (Ca2+) (Cai et al., 1999; Casuscelli et al., 2009; Koulen et 

al., 2002; Pazour, San Agustin, Follit, Rosenbaum, & Witman, 2002). PC1 and PC2, make up a 

mechanosensory complex and are localized to the primary cilium. Bending of the cilia induced by 

fluid flow activates the polycystin complex leading to an increase in Ca2+ influx (Praetorius & 

Spring, 2001, 2003). The absence or dysfunction of cilia, PC1, or PC2 decrease Ca2+ influx and 

hypersensitize the cell to proliferative signals causing cyst formation in polycystic kidney disease 

(PKD) (Gattone, Wang, Harris, & Torres, 2003; Joly, 2003; Kuo et al., 2014; Wallace, 2011). This 

disruption of flow-dependent and steady-state intracellular Ca2+ signaling could affect 

proliferation, differentiation, and apoptosis in a variety of cell types and tissues such as vascular 

endothelia, cholangiocytes, and chondrocytes (Abdul-Majeed & Nauli, 2011c; Gattone et al., 

2003; Joly, 2003; Kathem et al., 2014; Kuo et al., 2014; A. I. Masyuk et al., 2006; T. V Masyuk et 

al., 2003; Moser et al., 2005; Nauli et al., 2008, 2013; Wallace, 2011). 

 

Subsequent studies over the years have strengthened the varied roles of primary cilia and found 

important signaling complexes localized to the primary cilium. The causal relationship between 

dysfunctional primary cilia multi systematic diseases provides various avenues of study to 

strategize therapeutic options. As an antenna to sense mechanical stimuli i.e. fluid induced stress 

of bending, primary cilium has been shown to be potential targets for therapeutic intervention in 
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cases of ciliopathies. This type of cellular level rescue of ciliary function has been done in PKD 

mice models treated with cilia specific receptor agonists to increase flow sensitivity of the cilia.  

 

As mentioned before, fluid flow induced ciliary Ca2+ signaling phenomenon has been of great 

interest and highly studied. To overcome limitations of traditional viewing modalities, a mix of 

side view imaging and targeted sensors can be used to study Ca2+ changes at a high spatio-temporal 

resolution. Animal models have also shed light on the heterogeneity of cilia related diseases and 

suggest regulation of ion transport to be influenced by the cilia. As an important aspect of 

physiological balance, we study if the primary cilia are involved in pH sensing function and their 

possible role in pH recovery when challenged with acidosis. Another key finding in animal models 

of ciliopathies such as PKD and even human derived samples show high levels of cyclic adenosine 

monophosphate (cAMP). Targeted approaches to tackle high cAMP levels have been promising 

and as a key organelle in cyst development the cilia need to be studied for their possible role in 

cAMP signaling. Based on our imaging modality and targeted fluorescent sensors we are able to 

delineate specific signals arising from the distinct domains of the cilioplasm or cytoplasm. Defects 

in the ciliary structure or cilia localized protein complexes cause a variety of diseases. With 

increasing the knowledge of ciliary biology, we can strategize approaches to repair defective cilia.  
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Chapter 2. Mechanosensory and Chemosensory primary cilia in ciliopathy and 

ciliotherapy.* 

 

Abstract 

Mechanobiology is the study of cellular processes by which cells are able to sense and respond to 

extracellular physical forces and translate those mechanical signals into intracellular biochemical 

reactions, molecular responses, gene expressions and tissue developments.  Over the past few 

decades, the field within mechanobiology has been advanced by the discovery and recognition of 

a new sensory organelle, termed primary cilium.  Primary cilia serve as antennae to sense small 

changes in the microenvironment surrounding the cells.  Abnormalities in primary cilia can lead 

to various clinical diseases, termed ciliopathies, which are characterized by gross anatomical 

defects in cellular and tissue structures.  Medical exploitation of ciliotherapies is underway in 

attempt to assess primary cilium as a potential mechanobiology target at the cellular level for 

therapeutic intervention. 

 
* Nauli SM, Sherpa RT, Reese CJ, Nauli AM. Mechanosensory and Chemosensory Primary Cilia 
in Ciliopathy and Ciliotherapy. Mechanobiology: Exploitation for Medical Benefit. Hoboken, 
NJ, USA: John Wiley & Sons, Inc.; 2016. p. 75–99. https://doi.org/10.1002/9781118966174.ch5 
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Introduction 

Over the past few decades, we have been able to integrate mechanobiology into the molecular 

basis of disease.  Mechanical forces in the cellular microenvironment have been recognized as 

critical regulators for molecular responses, biochemical reactions, gene expressions and tissue 

developments.  Recent insights into cellular mechanotransduction point to primary cilium as the 

cellular organelle, which enables a cell to sense and respond to mechanical fluid-shear stress. 

 

Primary cilia are among the organelles possessed by cells.  As mechanosensory organelles, 

primary cilia are usually classified into a “9+0” type, a classification based on their structural 

microtubule arrangement (Figure 1).  Based on the motility characteristic, primary cilia are 

generally classified as non-motile organelles.  Like any other organelle within a cell, cilia have 

many important and specialized cellular functions.  Classification of cilia can thus provide a 

broad spectrum of understanding on their role in cellular function. 

 

Structural or functional abnormalities of primary cilia can result in a spectrum of clinical 

diseases that are associated with gross anatomical changes in tissue and/or organ structure 

(Hildebrandt, Benzing, and Katsanis 2011, Waters and Beales 2011).  It is therefore not hard to 

understand that a single cell is required to sense and respond to mechanical signals mediated 

from the extracellular micro-environment and translate those stimuli into intracellular signaling 

events.  Furthermore, this mechanotransduction process is crucial for maintaining a healthy 

cellular structure and function and cannot be disrupted.  With this understanding, we have an 

abundance of knowledge to exploit medical intervention in hope to remedy mechano-associated 

diseases. 

 

Mechanobiology and diseases 

Although genetic mutations or abnormal functions of various proteins can be traced back to 

mechanotransduction signaling, the etiology of mechano-pathophysiology has been difficult to 

analyze, primarily due to two main challenges.  The first challenge described previously by 

Nauli illustrates that mechanical forces are very difficult to analyze and differentiate in a 

complex physiological system in vivo (Nauli, Jin, and Hierck 2011).  Although different 
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mechanical forces are known to be distinct from one another in cell culture or ex vivo studies 

(Prasad et al. 2014, Nauli et al. 2013), the biophysical properties that these forces possess are 

extremely complex and can alter the property of one another in vivo.  For example, there are at 

least five different mechanical forces that a blood vessel could encounter (Table 1).  If pressure 

force were terminated through occlusion in one segment of an artery, the other four mechanical 

forces in the same artery would be altered.  In other words, if pressure were prevented from 

occurring in an artery, the artery would not have the ability to experience stretch, strain, 

compression or shear-stress forces, as a consequence. 

 

Table 1.  Mechanical forces within blood vessel (adapted from (105)) 
Types of forces Differentiations of forces 
Stretch Distention force by surrounding muscle 
Cyclic strain Pulsatile force by turbulent flow of blood 
Compression Contractile force by differential pressure in the vessel 
Pressure Systolic force on intima surface by kinetic flow of blood 
Shear stress Drag force along intima surface by kinetic flow of blood 

 

The second challenge proposed previously by Ingber expresses that mechanotransduction does 

not necessarily contain a classic coupling “stimulus-response” (Ingber 2003).  Any external 

mechanical forces would need to impose on the pre-existing force balance.  In other words, the 

pre-existing force coupled with additional force stimuli applied to the system governs the overall 

cellular response.  Thus, the existing forces have already complicated our studies on 

mechanotransduction, and if not assessed, would undermine the overall importance of the role of 

pre-existing physical forces in the surrounding microcellular environment. 

 

Nonetheless, abnormalities in the mechanotransduction cascade have long been implicated in 

clinical diseases (Ingber 2003).  Although diseases associated with mechanotransduction 

abnormalities include most branches of medicine (Table 2), it is important to note that the 

mechanism or etiology of the disease had been difficult to envision.  Studying these diseases in 

attempt to determine if they are caused by changes in cell mechanics, alterations in tissue 

structures, or deregulation of mechanochemical conversions, has been extremely challenging.  
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Table 2.  Mechanotransduction diseases  
Medical branches Examples References 
Cardiology atherosclerosis (8) 
Dermatology Ehlers-Danlos syndrome (112) 
Gastroenterology heartburn (27) 
Nephrology glomerulosclerosis (172) 
Neurology migrane (153) 
Oncology metastasis (132) 
Ophthalmology glaucoma (72) 
Orthopedics rheumatoid arthritis (143) 
Pediatrics congenital deafness (184) 
Pulmonary medicine emphysema (154) 
Reproductive medicine pre-eclampsia (68) 
Urology urinary incontinence (60) 

 

Identification of primary cilia as sensory organelles has been accomplished by Nauli along with 

others, thus making the association between mechanical property and its relevance to disease 

much easier to be studied.  Genetically identifying, proteomic finding and localizing many 

proteins to cilia have demonstrated the mechanosensory role of primary cilia in many vestibular 

organs.  Various organs depend on the mechanosensory characteristic of cilia to sense and 

transmit extracellular signals into intracellular biochemical responses.  Cilia possess the ability to 

sense a variety of fluid movements in the body, including blood in the vasculature (AbouAlaiwi 

et al. 2009, Nauli et al. 2008), urine in kidney nephrons (Nauli et al. 2006, Nauli et al. 2003), 

interstitial fluid in the bone matrix (Whitfield 2008), bile in the hepatic biliary system (Masyuk 

et al. 2006), pancreatic juice in the pancreatic duct (Rydholm et al. 2010), cerebral spinal fluid in 

the neuronal tube (Narita et al. 2010), fluid pressure in the inner ears (Lepelletier et al. 2013, 

Kim et al. 2003), and so on.   

 

The inability to sense fluid-shear stress in these vestibular organs can be a factor which 

contributes to multiple organ pathogenesis (e.g. hypertension to hydrocephalus or deafness to 

cystic organ formation).  Consequently, abnormal primary cilia function and/or ciliary proteins 

are now linked to various developmental disorders known as ciliopathies.  These include left-

right asymmetry defect, nephronophthisis, Bardet Biedl Syndrome, Oral Facial Syndrome, 

polycystic kidney disease, obesity, hypertension and aneurysm among others. 
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Figure 1. Primary cilium as a sensory organelle. (a) A side-view of primary cilium which acts as 
a cellular organelle.  A primary cilium is projected at the apical membrane of many cell types.  
The cilium is extended from a mother centriole, also known as a basal body. (b) Based on the 
central pair of the microtubules in the axoneme seen from the cross-section, a primary cilium is 
generally categorized into a “9+0” structure.  It was once thought that a cilium with “9+0” 
axoneme was always immotile.  Classification of cilia becomes more complex, because some of 
“9+0” primary cilia are known to be motile. 

 

 

Primary cilia as biomechanics  

Primary cilia have garnered much interest over the last few years, although it was once thought 

to be a dormant vestigial organelle with no known function. A primary cilium is a microtubule-

based, antenna-like structure and is found in a single copy on the apical surface of fully 

differentiated mammalian cells (Figure 1).  The diameter of a cilium is approximately 0.25 µm, 

and its length can vary from 2 to 50 µm.  
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Mechanosensory studies on primary cilia in different organ systems have confirmed that cilia are 

responsive to fluid-shear stress.  Activation of cilia can be accomplished by bending with either 

suction through a micropipette (Praetorius and Spring 2001), apical fluid perfusion through 

changing the flow rate (Prasad, Jin, and Nauli 2014) or twisting using magnetic beads (Nauli et 

al. 2013).  Cilia act as micro-sensory compartments, and their role depends on mechano-proteins 

such as polycystin-1 (Nauli et al. 2008, Nauli et al. 2003), polycystin-2 (AbouAlaiwi et al. 2009), 

fibrocystin (Wang et al. 2007), transient receptor potential-4 (Kottgen et al. 2008) and many 

others that have been recently discovered (Table 3).  Thus, the overall functions of the sensory 

cilia compartments depend on the proper localization of cilia’s functional proteins (Figure 2).  A 

partial list of ciliary proteins in addition to their specific localizations is summarized in the table 

below (Table 3). 

 

Table 3.  Ciliary proteins and their subcellular localization. 

Ciliary tip Reference Ciliary soluble 
compartment Reference 

EB1  (128, 146)  14-3-3 (32) 
Gli (42, 76) Adenylyl cyclase (16, 92) 
KIF7 (29, 76) Arl13b (19, 46) 
Smo (20, 42, 76) Arl2l1 (155) 
Sufu (55) ATP synthase (49) 
  b-arrestin-2 (92) 
 
Ciliary axoneme 

 
Reference 

CaM Kinase II (92) 
CAML  (101) 

DNAH11 (12) CRB1 (32) 
DNAH5 (51) CRB3 (31, 32, 117) 
DNAH7 (180) Cystin (47, 178) 
DNAI1 (130) GRK3 (92) 
Dyf-1 (21, 122) GSK3b (30, 161) 
Dyf-3 (98, 123) Importin (31) 
DYNC2H1 (91) Mek1/2  (145) 
DYNC2LI1 (138) OSEG family  (7) 
Hydin (23, 125) Par3 (32, 110, 148) 
IFT140 (162) Par6 (32) 
IFT172 (38, 50, 83, 129, 

155) 
Phosphodiesterase (92) 

IFT20 (35, 58) PKC (30, 32) 
IFT46 (39) pVHL (79, 113, 161) 
IFT52 (78, 162) STAT6 (81) 
IFT57/curly  (70, 83) Tubby (87, 96) 
IFT57/hippi (48, 162) TULP2 (152) 
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IFT80 (13)   
IFT81 (82, 155) 

Ciliary membrane Reference IFT88 (43, 99, 126, 137, 
179) 

Kif17 (54) EGFR (84) 
Kif3A/B (77, 88, 89, 156) Fibrocystin (166, 167) 
MDHC7 (108, 164) Mchr1 (14) 
PACRG (24, 80) PDGFRα (145) 
PF13 (118) Polycystin-1 (11, 178) 
PF16 (142, 181) Polycystin-2 (11, 127, 178) 
PF2 (140) Somatostatin-3 

receptor 
(147) 

PF20 (182) Serotonin-6 receptor (18) 
Tektin (158) Tie-1,Tie-2 

receptors 
(160) 

  TRPN1 (62, 149)  
  TRPV4 (136, 159) 
    
Ciliary base 
(centrosome) Reference Ciliary base 

(centrosome) Reference 

ALMS1 (41, 44, 74, 93) Nek1 (86, 170) 
BBS1 (22, 111, 115) Nek2 (9) 
BBS2 (100, 109, 111) Nek7 (66, 177) 
BBS3 (33) Nek8 (86, 121) 
BBS4 (36, 64, 111) NPHP-1 (120, 173) 
BBS5 (75, 176) NPHP-2 (120) 
BBS6 (65) NPHP-3 (15, 114) 
BBS7 (17, 115) NPHP-4 (94, 173) 
BBS8 (5, 17) NPHP-5 (119) 
CC2D2A (37) NPHP-6 (144) 
Cep164 (41) ODF2 (26, 53) 
CEP290 (37, 63) OFD1  (34, 139) 
EBI (6, 131, 146) p-150 (6) 
Fa2p (85) PCM-1 (41, 63, 64, 93) 
FAPP2 (165) Pericentrin (41, 59, 93) 
Fin1 (40) POC12/MKS1 (25, 71, 169) 
Fleer (124) Rab8 (63) 
Jouberin (28) Rootletin (9, 174, 175) 
MKS-1 (25, 71) RPGR (150) 
MKS-3 (25, 151, 157) Seahorse (67, 95) 
  UNC (10) 
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Figure 2. Mechanosensory primary cilia are dependent on functional sensory proteins. 
Polycystin-1, polycystin-2 and fibrocystin form a mechanosensory complex protein in the cilium 
to sense fluid-shear stress.  Polycystin-1 and polycystin-2 interact with each other at their COOH 
termini forming a polycystin complex.  It is predicted that fibrocystin interacts with this complex 
through polycystin-2 with kif acting as an adaptor protein. 

 

Cells that no longer possess functional cilia show a loss in response to intracellular calcium after 

fluid-flow is induced.  The primary cilium is able to respond to bending by the use of calcium 

entry through mechanically sensitive channels (Jin, Muntean, et al. 2014).  The initial calcium 

influx into the cilia results in the gradual development of calcium-induced calcium-release 

mechanisms from intracellular stores (Jin, Mohieldin, et al. 2014).  Large increases in the 

calcium levels of a cell may activate calcium-sensitive channels or calcium-dependent processes 

ranging from cell proliferation to cell death.  Observation of the flow induced calcium response 
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in cells lacking cilia, demonstrated that without structural cilia, a cellular response to fluid flow 

was not detected, although all sensory machineries were still present (Aboualaiwi et al. 2014). 

 

 

Figure 3. Intracellular signaling pathways are involved in transducing mechanosensory function 
of primary cilia. Mechanistic divergence pathways initiated from primary cilia are responsible 
for blood pressure maintenance and aneurysm formation.  Abnormal primary cilia would induce 
high blood pressure earlier than aneurysm formation.  However, abnormal survivin function is 
sufficient to form an aneurysm without altering blood pressure.  Blue texts indicate the genes 
responsible for the mechanotransduction pathway of primary cilia.  

 

Modulating mechanobiology pathways 

Studies on cilia biology have shown that primary cilia are coordinators involved in signaling 

pathways during development and tissue homeostasis.  Cilia are composed of receptors, ion 

channels, and various transporter proteins. This composition enables primary cilia to play a 

critical role in several transduction pathways such as Hedgehog (Hh), Wnt, planar cell polarity 
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and platelet-derived growth factor (PDGF) (Muntean et al. 2014, Zilber et al. 2013, Schneider et 

al. 2005, Corbit et al. 2005).  Mechanosensory pathways have also been probed, and any 

abnormalities in these pathways could result in hypertension and/or aneurysm formation (Figure 

3). 

 

 

Figure 4. Ciliary dopamine receptor can regulate cilia length and function through a complex 
cellular pathway. Both calcium- and cAMP-dependent protein kinases (PKC and PKA) are 
involved in regulating cilia length through MAP kinase (MAPK) and protein phosphatase-1 (PP-
1).  PP-1 plays an important role in actin rearrangement, which is a requirement for cilia length 
regulation.  As cilia length optimally increases, the cilia function will become more sensitive in 
response to fluid-shear stress. 

 

Potential intervention for cilio-therapy 

Both ciliary length and function are tightly regulated (Abdul-Majeed, Moloney, and Nauli 2012).  

Longer cilia tend to have a greater sensitivity in response to fluid-shear stress (Upadhyay et al. 

2014).  Activation of the ciliary dopamine receptor (DR) will increase cilia length.  More 
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specifically, dopamine receptor-type 5 (DR5) is localized to primary cilia.  As such, DR5-

specific agonist is among the few stimuli that require cilia for ciliary and intracellular signal 

transductions (Abdul-Majeed and Nauli 2011).  DR5 activation increases cilia length through 

cofilin and actin polymerization (Figure 4).  

 

The idea that pharmacological DR5 activation could be used as cilio-therapy is evident through 

in vitro studies involving the termination of mechano-ciliary function through silencing DR5 

expression (Abdul-Majeed and Nauli 2011).  DR5 activation also restores cilia function in the 

mechano-insensitive cells.  Because the chemo-sensory function of cilia via DR5 can alter the 

mechano-sensory function through changes in sensitivity to fluid-shear stress, it has been 

proposed that DR5 has functional chemo- and mechano-sensory roles in primary cilia (Abdul-

Majeed and Nauli 2011). 

 

Potential mechano-therapy 

Patients with polycystic kidney disease (PKD) suffer from uncontrolled hypertension.  It has 

been shown that vascular endothelia in PKD patients are mechanically compensated with 

abnormal primary cilia function (AbouAlaiwi et al. 2009).  Activating DR5 can be used as a 

potential mechano-therapy by altering the mechanosensory function of primary cilia.  This type 

of therapy is also known as cilio-therapy (Kathem et al. 2014).  The initial drug screening 

indicated that activation of ciliary DR5 in addition to the DR5-specific agonist (fenoldopam), 

increases nitric oxide (NO) biosynthesis in response to fluid-shear stress in vascular endothelia.  

DR5 activation increases cilia length, and it also rescues mechanosensitivity of PKD endothelial 

cells from fluid-shear stress.  This, in turn, decreases the overall blood pressure in the PKD 

mouse model (Kathem et al. 2014).  In the clinical study, hypertensive PKD patients have a 

significantly lower baseline level of NO compared to hypertensive-only patients.  DR5 activation 

decreases blood pressure in PKD patients (Kathem et al. 2014).   

 

The baseline level of asymmetric dimethylarginine (ADMA), an endogenous inhibitor for eNOS 

and a marker for endothelial dysfunction, is significantly higher in the PKD group of patients 

compared to the hypertensive-only group of patients (Kathem et al. 2014).  ADMA is a 
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physiological inhibitor of NO biosynthesis and is commonly used as a marker for assessing 

endothelial function in the clinical setting.  Consistent with this idea, plasma ADMA levels are 

highly correlated with the severity of endothelial dysfunction, and high ADMA levels further 

impairs blood flow and accelerates endothelial dysfunction in PKD patients.  Compared to the 

hypertensive-only patients, the PKD patients have an abnormality in regulating NO biosynthesis.  

This is consistent with a previous study indicating that vascular-lining endothelia from patients 

with PKD are dysfunctional due to their non-sensitivity to flow-induced NO biosynthesis 

(AbouAlaiwi et al. 2009). 

 

Results from a less complex in vivo rodent system with endothelial cilia dysfunction also 

supports the idea that a DR5-cilia-NO axis plays an important role in regulating blood pressure 

in PKD (Kathem et al. 2014).  In a more complex clinical setting, dopaminergic receptor 

activation showed a potential therapeutic benefit on overall arterial blood pressure.  Together, 

these studies serve as a proof of principle for targeted-clinical therapy on primary cilia as a novel 

mechanism to modulate the progression of a ciliopathy and biomechanics-related diseases in 

general. 

 

Although it was previously proposed that peripheral dopaminergic activation increases renal 

blood flow (Olsen 1998), we postulate that this vasodilation effect of dopamine on renal arteries 

acts by sensitizing primary cilia function. Without a doubt, a specific targeted therapy is more 

suitable for therapeutic management of different mechanical diseases.  Future studies are 

warranted.  Nonetheless, recent clinical studies shed light on the possibility for cilia-targeted 

therapy in PKD patients and hypertensive patients with mechanical-sensing dysfunction. 

 

Summary 

Our knowledge of mechanotransduction has been advanced in the past decades.  This includes 

the recognition of primary cilia, which function as mechanosensory organelles.  The importance 

of sensory cilia in different organ systems has also been confirmed, and many more cilia-related 

diseases are still to be identified.  There is no doubt that the biomedical approach to target 

mechanosensory primary cilia will continue to be debated in the years to come. 
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Chapter 3. Measurement of cytoplasmic and cilioplasmic calcium in a single living cell.* 

 

Abstract 

Cellular signaling represents an evolution of biological systems to sense external stimuli and 

communicate extracellular microenvironment to the intracellular compartments. The processes 

underlying molecular signaling have been widely studied due to their important cellular 

functions. There are numerous techniques available to quantitate the different molecules 

involved in cellular processes. Among them, calcium is a ubiquitous signaling molecule involved 

in many biological pathways. Over time the methods to measure intracellular calcium has 

advanced to better understand its role as a second messenger. In this chapter, we introduce a 

method to study a single cilium, a mechanosensor that elicits a calcium signaling cascade. To 

successfully observe the calcium changes in this thin cylindrical-like projection from the cell 

surface, we utilize a genetically encoded sensor with a high spatial and temporal resolution. In 

addition, the probe must be localized to the ciliary compartment in order to observe the 

intraciliary calcium signaling dynamics. To this end, a cilium targeting genetically encoded 

indicator is used to observe calcium fluxes in both cytoplasm and cilioplasm.   

Keywords: Calcium (Ca2+), Cilia, Calcium Sensor, G-GECO1.0, Fluorescent imaging, Live cell 

imaging 

 
* Sherpa RT, Pala R, Mohieldin AM, Nauli SM. Measurement of cytoplasmic and cilioplasmic 
calcium in a single living cell. Methods Cell Biol. 2019 Apr 17. 
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Introduction 

Calcium ions (Ca2+) are essential in biological systems. They play important roles as a secondary 

messenger in regulating vascular tone (Falcone, Kuo, & Meininger, 1993; Johns et al., 1987), 

neurotransmitter release (Kerr et al., 2000; Sabatini, Oertner, & Svoboda, 2002), muscle 

contraction (Ebashi & Endo, 1968; Forder, Scriabine, & Rasmussen, 1985; Wier, Cannell, 

Berlin, Marban, & Lederer, 1987) and immune responses (Ebashi & Endo, 1968; Forder et al., 

1985; Wier et al., 1987) among many others. Even the beginning of life requires the spark of 

Ca2+ during fertilization (Ebashi & Endo, 1968; Forder et al., 1985; Wier et al., 1987). Ca2+ 

signaling affects every aspect of a cell's life and death. Just as Ca2+ signaling has been conserved 

throughout evolution, the primary cilium has also been conserved from our primitive ancestors. 

Cilia are slender microtubule-based organelles that protrude from the apical membrane in most 

adherent cells (S. Sorokin, 1962; S. P. Sorokin, 1968). However, these non-motile cilia were 

once thought to be a vestigial cell appendage without any apparent function. That was the 

consensus until studies looking into a possible mechanosensory function of the primary cilium 

proved it to be an essential cellular organelle (Malone et al., 2007; Masyuk et al., 2006; Nauli et 

al., 2003, 2013, 2008, Praetorius & Spring, 2001, 2003). Praetorius and Spring used a setup of 

differential interference contrast (DIC) and fluorescent microscopy to observe MDCK (Madin-

Darby Canine Kidney) cells incubated with Fluo-4, a fluorescent calcium indicator. Then 

micropipette suction was applied in order to bend the cilia and detect flow-induced Ca2+ changes. 

(Praetorius & Spring, 2001, 2003).  

 

The fluid flow-induced cilium bending initiates an intracellular Ca2+ influx followed by global 

Ca2+ increase and sustained membrane hyperpolarization (Praetorius & Spring, 2001, 2003). 

Since then, other studies have found a mechanosensory complex of polycystins 1 & 2 (PC 1 and 

PC 2) in the ciliary membrane of the renal epithelia which mediate flow sensation (Jin et al., 

2014; Nauli et al., 2003, 2008). The bending of the primary cilium causes conformational change 

in the PC 1 and the associated PC 2, a transient receptor potential Ca2+ channel, is then activated 

causing an influx of extracellular Ca2+ (Delmas et al., 2002; Hanaoka et al., 2000; Nauli et al., 

2003; Nauli, Pala, & Kleene, 2016). The influx then triggers the release of Ca2+ from the 

intracellular stores through the stimulation of ryanodine receptors (Nauli et al., 2003; Xu et al., 

2006). Other studies have found that the cilia are enriched with critical proteins in signaling 
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pathways like Hedgehog, Wnt and Notch as well as membranous GPCRs (Haycraft et al., 2005; 

Huang & Schier, 2009; Ishikawa, Thompson, Yates, Marshall, & Marshall, 2012; Gregory J 

Pazour, Agrin, Leszyk, & Witman, 2005; Schou, Pedersen, & Christensen, 2015). All these 

proteins are synthesized in the cytosol and eventually transported to the cilia by intraflagellar 

transport (IFT) apparatus (Liem et al., 2012; Mukhopadhyay et al., 2010; G J Pazour, Dickert, & 

Witman, 1999).  

 

With the function of collecting mechanical and chemical cues from the environmental milieu, the 

importance and the wide functional coverage of the primary cilia becomes even more apparent 

when the cilia are defective (Christensen, Clement, Satir, & Pedersen, 2012; Singla & Reiter, 

2006). The range of diseases affecting multiple systems in the body that arise from dysfunctional 

cilia is called ciliopathies (Kathem et al., 2014; Nauli, Sherpa, Reese, & Nauli, 2016; Pala et al., 

2018). As the flow-mediated Ca2+ influx can be a functional readout of physiologically relevant 

cilia function, technologies to study and measure Ca2+ changes within the cilia and the cytoplasm 

are needed.  

 

The challenge of observing live Ca2+ levels in the cilia arise due to the size of primary cilia. With 

a diameter around 200 nm and a perpendicular orientation in relation to the cell monolayer, it 

requires specific setup to visualize the cilium together with the cytoplasm since they are at 

different planes of view (Jin et al., 2014; Su et al., 2013). In addition to these difficulties, 

traditional Ca2+ indicators also fail to reach the cilioplasm requiring modification of sensors to 

target the cilia. The exclusion of most cellular components and exogenous compounds, unless 

specifically designated for the cilia, happens due to a diffusion barrier at the base of the cilia 

(Breslow, Koslover, Seydel, Spakowitz, & Nachury, 2013; Hu et al., 2010; Satir, 2017). The 

presence of a barrier between the cytoplasm and cilioplasm was first observed using freeze-

fracture electron microscopy by Gilula and Satir in the form of a “ciliary necklace” (Gilula & 

Satir, 1972). This detailed molecular composition of this transition zone at the base of cilia 

remains to be established. Nonetheless it is interesting to find that mutated proteins involved in 

ciliopathies localize to the ciliary transition zone and might be necessary for shuttling 

biomolecules (Delous et al., 2007; Fliegauf et al., 2006; Mollet et al., 2005; Otto et al., 2005, 

2003; Valente et al., 2010; C. L. Williams, Masyukova, & Yoder, 2010; Corey L. Williams, 
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Winkelbauer, Schafer, Michaud, & Yoder, 2008). The consensus is that while some small 

cytosolic proteins might freely diffuse into the cilia larger molecules or complexes will require a 

favorable interaction with the transition zone before entering the cilioplasm. To overcome this 

challenge, researchers have added targeting modules intended to transport the attached cargo into 

the cilia. Relying on the same strategy, we outline a method of single-cell imaging technique to 

distinctively visualize Ca2+ signaling in the intraciliary compartment and cytosol of a live cell.  

 

1. Choosing Ca2+ indicators 

Detecting calcium fluxes in cells are best studied using Ca2+ indicators. With the backing of 

years of research, there are now a collection of indicators that can be used to examine Ca2+ 

dynamics. There are two main categories of Ca2+ indicators; 1) small molecule and 2) genetically 

encoded calcium indicators (GECIs) (Brini et al., 1994; Cobbold & Rink, 1987; Mank et al., 

2008; Miyawaki et al., 1997; Nagai, Sawano, Park, & Miyawaki, 2001; Nakai, Ohkura, & Imoto, 

2001; Amy E. Palmer et al., 2006; Romoser, Hinkle, & Persechini, 1997). Small molecule 

indicators have superior dynamic range, higher sensitivity and rapid response kinetics (Pérez 

Koldenkova & Nagai, 2013; Rudolf, Mongillo, Rizzuto, & Pozzan, 2003).  

 

Small molecule indicators like Fura-2 acetoxymethyl ester (Fura-2AM) are robust, allowing 

ratiometric measurements that can be easily interpreted and less prone to experimental artifacts 

(D. A. Williams, Fogarty, Tsien, & Fay, 1985). Another key point to consider is to ensure that 

the affinity for Ca2+ (Kd), which can vary among the indicators, is suitable to measure the local 

Ca2+ concentration in the region of interest. Nonetheless, all these depend on the availability of a 

microscope with the proper setup of emission channels, acquisition features, and motorized filter 

wheels if ratiometric indicators are used. Even with their advantages, small molecule indicators 

cannot be used for applications that focus on delineating organelle specific Ca2+ changes. Cell-

permeant indicators, like Fura-2AM, or ones that require more invasive methods are assumed to 

be homogeneously distributed in the cytosol after loading. But these indicators face the 

possibility of being either included or excluded from membrane-enclosed structures in the cell. 

Since signaling depends on spatial origin and compartmentalization, indicators that can segregate 

into target organelles are valuable to appreciate the different spatial compartments of signaling.  
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The other class of indicators is GECI, which are constructed with a Ca2+ binding module and one 

or more fluorophores (Figure 5). As a general mechanism, in most GECIs Ca2+ interacts with the 

binding domain, conformational changes are transferred to the fluorophores affecting the 

fluorescence intensity. GECIs require gene transfer, i.e., insertion of the nucleic acid sequence 

coding for the sensor into the cell line of interest. There are a variety of transduction/transfection 

methods that can be used for transformation. Once expressed in the cells, the indicator is 

incorporated in the cellular milieu. This is an advantage over small molecule indicators which 

require repetitive dye incubation for every experiment, suffer from dye leakage and prone 

cellular toxicity during extended time-lapse experiments. 

 

To address the lack of cellular localization ability of small molecule indicators, an addition of 

targeting sequence to the GECI can be done. There are GECIs that have been targeted to 

organelles like mitochondria (Filippin et al., 2005; Amy E. Palmer et al., 2006), golgi 

(Griesbeck, Baird, Campbell, Zacharias, & Tsien, 2001), endoplasmic reticulum (Miyawaki et 

al., 1997; A. E. Palmer, Jin, Reed, & Tsien, 2004) and nucleus (Miyawaki et al., 1997). Choosing 

indicators is strictly determined by the needs of the researcher, and the key characteristics to 

consider include the dynamic range, affinity (Kd) of the indicator for Ca2+, response kinetics and 

targeting ability.  

 

In our experiments, we are interested in the primary cilia, which is a cellular projection arising 

from the cell and plays a sensory role in a variety of specialized cells (Malone et al., 2007; 

Masyuk et al., 2006; Nauli et al., 2003, 2008). For our purpose, we utilize 5HT6-mCherry-G-

GECO1.0 (Figure 5c, Addgene, Cat. 47500) developed by Su et al.  which contains a cilium-

targeting sequence (CTS) derived from 5HT6, a serotonin receptor (Berbari, Johnson, Lewis, 

Askwith, & Mykytyn, 2008), a mCherry marker and the Ca2+ sensor G-GECO1 (Zhao et al., 

2011). G-GECO1 is a single fluorescent sensor based on G-CaMP3, an iteration of the original 

G-CaMP. A few G-CaMP3 iterations and their cilia targeting fusions are outlined in Figure 4. 

Like the original G-CaMP, G-GECO1 still retains the circularly permuted enhanced green 

fluorescent protein (EGFP), calmodulin (CaM) in the C terminal, and myosin light chain (M13 

peptide sequence) (Nakai et al., 2001; Tian et al., 2009). When Ca2+ binds to the CaM domain, 

conformational changes due to the Ca2+–CaM–M13 interaction induces a subsequent 
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conformational change in EGFP and a change in fluorescent intensity (Akerboom et al., 2012, 

2009; Nakai et al., 2001). This changes the fluorescence intensity of EGFP which can be 

correlated to Ca2+ levels. Like other Ca2+ indicators, G-CaMP3 by itself fails to penetrate into the 

cilioplasm and in order to overcome this challenge a CTS derived from ciliary protein can be 

used. This strategy allows the cellular transportation machinery to move the CTS-attached sensor 

to the cilia. Like 5HT6, the intracellular C-tail of fibrocystin (Pkhd1 C1-68) (Follit, Li, Vucica, 

& Pazour, 2010) and the third cytoplasmic loop of SSTR3 (Berbari et al., 2008) are also CTSs 

among others used to deliver sensors to the cilia (Follit et al., 2010; Jin et al., 2014). The Ca2+ 

sensor, G-GECO1 has double the dynamic range of G-CaMP3, due to substitutions (K119I, 

L173Q, S404G, and E430V) in the original G-CaMP3. The increased dynamic range is 

advantageous for observing ciliary Ca2+ with a baseline Ca2+ as high as 742 nM (DeCaen, 

Delling, Vien, & Clapham, 2013). The other advantage of 5HT6-mCherry-G-GECO1.0 is the 

presence of constant mCherry fluorescent marker independent of Ca2+ flux. The mCherry aids in 

visualization of ciliary movement, correction of artifacts and ratiometric analysis of the data.  
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2. Experimental Setup 

 

Figure 5. Schematic representation of GECI construct. (a) G-CaMP3 is a single fluorescent Ca2+ 
sensor and after fusion with CTS such as the cytoplasmic tail of PKHD1 in (b) CTS-G-CaMP3, 
the sensor localizes to the cilioplasm. (c) In 5HT6-mCherry-G-GECO1.0 the Ca2+ sensor, G-
GECO1.0 is attached to a CTS derived from 5HT6 and mCherry, a stable fluorescence marker to 
track ciliary movement. (d) ALC is another GECI based on FRET for Ca2+ quantification, fused 
with the CTS Arl13b for cilia localization. 

 

2.1. Expression of genetically encoded cilia targeting sensor 

5HT6-mCherry-G-GECO1.0 plasmid construction has been outlined by Su et al., 2013. Porcine 

kidney epithelial cells (LLC-PK1, ATCC CL-101) derived from proximal tubules is grown at 

37°C in Dulbecco's modified Eagle's medium containing 10% fetal bovine serum (FBS) and 1% 

penicillin-streptomycin hence referred as growth media. After reaching a confluence of 60-70%, 

the cells are transfected with the 5HT6-mCherry-G-GECO1.0 construct using Jetprime 

transfection reagent (Polyplus Transfection, Ref. 114-15) according to the manufacturer’s 

instructions and selected using G418 at a concentration of 500 µg/ml.  
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2.2. Cell growth on microwire  

After selecting cells that express 5HT6-mCherry-G-GECO1.0, the transfected cells can now be 

grown on a precision tungsten microwire. Tungsten microwire can be obtained through Luma 

Metall AB, Sweden.  We recommend a high purity wire (Wire quality #823) and straightened 

electrolytically etched with a final diameter of less than 100 µm (Surface finish #42) for the 

experiment. The preparation of the precision microwire requires coating with type I collagen (50 

μg/mL in 0.02N acetic acid) to provide a conducive surface for cell attachment and growth. The 

microwires are then UV sterilized for 30 minutes and mounted on the imaging chamber before 

seeding cells. Continue to monitor cell growth for 1-2 days and when the confluency reached 

~95-98% add low serum media (2% FBS) to promote ciliation of the cells. If needed the 

microwire can be gently rotated to observe the confluency of the cells around the microwire.  

 

3. Fluorescence Microscopy 

3.1. Overview 

Microscopy has permitted an appreciation of molecular level activities in cells. Starting from a 

simple setup of optical lenses used by pioneer scientists to view simple structures, the 

microscope has evolved into sophisticated digital imaging systems with increased spatial and 

temporal resolution for specialized procedures in scientific research. The concurrent 

development of molecular techniques, innovative approaches and iterative progression of 

fluorescent proteins have contributed to the breakthrough in our understanding of cellular 

functions.  

 

Fluorescence is the phenomenon of absorption of electromagnetic radiation and the subsequent 

release of radiation by a fluorophore. A basic fluorescence microscope functions to irradiate the 

specimen with a desired and specific band of wavelengths. An illumination source produces a 

specific wavelength band and passes it through a selective excitation filter. The excitation light 

then reflects off from a dichroic mirror to the sample. If the specimen fluoresces, the illumination 

is then emitted back, albeit at a lower energy level in a phenomenon called Stokes shift. The 

emission is gathered by the objective and passed back through the dichroic mirror into the 
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emission filter, which blocks the unwanted excitation wavelengths. Building on these basic 

principles, innovative indicator design using molecular approaches have significantly advanced 

the use of fluorescence microscopy to study cell processes. So, in addition to a suitable 

fluorescent indicator for experimental needs, a basic prerequisite is the microscope system which 

should have the capabilities to support required specifications.  

 

3.2. Experimental setup  

Our experimental setup consists of two main components 

i) Flow equipment that includes imaging dishes which are standard 35 mm plates with a custom-

made glass coverslip bottom. For the imaging dishes, a hole is cut out from the bottom of the 

plate and using a silicone-based glue (Loctite® Clear Silicone Waterproof Sealant; 

Item#908570) a glass coverslip is attached to the plate. We also have a perfusion pump with 

variable flow settings and inlet/outlet tubing to allow fluid flow over the microwire (Figure 6a).  

ii) Imaging equipment, which in our case is an inverted fluorescent microscope with accessories 

for rapid imaging. We use a Nikon Ti-Eclipse outfitted with excitation and emission filter 

wheels, controlled by a Lambda 10-3 filter changer. In addition, the DG-5 Plus module high-

speed wavelength switcher for rapid imaging of two signals, EGFP and mCherry. The software 

package is NIS-elements and used to interface with the microscope, filter changer and camera as 

well as conduct data analysis. The setup can capture DIC and fluorescence images. With the 

okoLab incubator module, the cells can be sustained in a controlled environment of 37°C, 5% 

CO2 and appropriate humidity for long periods if needed. The 5HT6-mCherry-G-GECO1.0 has 

EGFP with excitation and emission wavelengths of 495 and 515 nm, respectively. The mCherry 

has excitation and emission wavelengths of 587 and 610 nm, respectively. The user must adjust 

the excitation and emission setup to successfully view the signals. Exposure will also need to be 

adjusted around 200-600 ms for rapid imaging while also maintaining satisfactory baseline signal 

of the EGFP and mCherry.  
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Figure 6. Flow equipment setup for live cell and cilia imaging. (a) The flow setup uses a 
peristaltic pump in a closed loop system. The perfusion chamber consists of a top base plate with 
inlet and outlet connected to the pump. Then we have a silicone gasket to form a channel for 
laminar flow and finally, a glass bottom imaging plate. (b) Top view of each perfusion chamber 
component. 

 

3.2.1. Flow equipment setup 

In our experiment, we use an Instech P720 peristaltic pump in a closed perfusion system with 

inlet and outlet to the perfusion chamber (Brown & Larson, 2001; Jin et al., 2014; Nauli et al., 

2013). The flow chamber from GlycoTech (Cat. 31–001) is arranged as follows from top to 

bottom (Figure 6b) 

1. base plate with an inlet and outlet port for perfusate flow. 

2. silicone gasket that defines the geometry of the flow region to achieve non-turbulence, 

laminar flow and seals the chamber from potential fluid leakage. 

3. glass bottom plate on which the microwire is to be placed. 

The components are set up to minimize the use of excessive long tubing; the volume of perfusate 

is determined empirically; the pump is primed with perfusate before each experiment. Once the 

transfected cells expressing 5HT6-mCherry-G-GECO1.0 are fully confluent on the microwire, 
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they are placed on the imaging dish. The assembly is then put together as mentioned above 

providing an inlet and outlet of fluid (Figure 6). A range of shear-stress from 0.1 to 50 dyne/cm2 

can be used to induce bending of cilia. Assuming the GlycoTech perfusion chamber to be shaped 

as a cuboid based on the dimensions of the gasket, the flow rate can be adjusted to obtain the 

desired shear stress using the following formula. 

 

 
 

Where: 

τw = Wall shear stress (dyne/cm2) 

Q = Volumetric flow rate in (mL/s) 

η = Apparent fluid viscosity in (dyne.s/cm2) 

a= Chamber height / Gasket thickness (cm) 

b= Chamber / Gasket width (cm) 

As a note, at 33-39 °C, Dulbecco’s Modified Eagle Medium or HEPES has a calculated 

viscosity of ~ 0.0076 dyne.s/cm2 (Nauli et al., 2013). 

Figure 7. Microwire with cells in a perfusion chamber. (a) In the diagram, the gasket is placed on 
the imaging dish in a manner to orient the microwire parallel to laminar flow.  At a higher 
magnification, the cilium protruding outward should become even clearer. We will focus on a 
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single cell and capture Ca2+ data in response to fluid flow. (b) Schematic of the experimental 
setup with stopcock valves to load and unload buffers into circulation.  

 

3.2.2. Monitoring experiment 

After assembling flow chamber with the microwire inside, place the plate onto the stage. Join the 

fluid channels to the pump. Eliminate air bubbles and equilibrate the cells for 15-20 minutes. Use 

brightfield illumination to focus on the edge to the precision microwire at a lower magnification. 

Switch to a 100X objective to find a cell with cilia. At a 100X objective and correct positioning, 

side-view imaging should show both the cilium and the cell body at the same time (Figure 7a). 

One can switch directly to the fluorescence illumination, using the mCherry signal to find cilia 

that should possess the 5HT6-mCherry-G-GECO1.0 sensor. As a note, even the cell body will 

fluoresce because the sensor is produced in the cytosol before being trafficked into the 

cilioplasm. Due to the random probability of orientation and mostly due to the ~200 nm size of 

the cilium, finding one may remain elusive and might take a while to find a field that captures 

both the cilioplasm in its full length and the cytoplasm in focus.  

 

After confirming the fluorescence localization and checking to see proper cell morphology, we 

can start the experiment. To measure the resting Ca2+, start the data acquisition and collect 

images every ∼ 1-10 s for 5 minutes. The pump can be turned on after collecting baseline data.  

At this time, data can be collected continuously; i.e., no delay data acquisition to view rapid 

fluxes in Ca2+. The introduction of flow might lead to small movement initially, but that can be 

resolved with a focal or stage adjustment to ensure the cilium remains visible and in-focus. After 

the fluid flow data capture, buffer can be exchanged using stopcock valves to introduce new 

perfusate and simultaneously eliminate the initial circulating buffer (Figure 7b). To obtain the 

minimum fluorescence the buffer is replaced with Ca2+-free solution containing 2 mM EGTA 

and 10 μM ionomycin. Using tubing with an inner diameter of 0.02 inches (0.5 mm) and length 

of 8 inches (20 cm), we get a dead volume of 39 mm3 or 39 µL.  Complete media exchange in 

the flow chamber takes about a minute and the same applies to the time for diverting the 

Ca2+solution to the waste container. After the minimum signal is determined, the cell is 

challenged with Ca2+ (10 mM) to obtain a maximum signal.  This is to ensure that 1) the system 
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is responding accordingly to the ambient Ca2+ concentration and 2) the dynamic range (or Kd) of 

the Ca2+ indicator is within the expected target. 

 

3.2.3. Data analysis 

For analysis, a region of interest (ROI) is generated around the cilium using the ROI tool, and a 

duplicate ROI is placed adjacent to the cilium for background measurement. A separate ROI is 

created for the cell body as well. The ROI can be adjusted at various time points after fluid flow 

to account for the cilium bending. The fluorescence signal intensity data from the ROI can be 

subtracted from the background fluorescence and two steps of normalization i) against the 

mCherry and ii) basal signal intensities applied to the data. EGFP/mCherry images can be 

generated by taking the ratio of EGFP and mCherry signal intensities and pseudo-colored for 

viewing (Figure 8).  

Figure 8. Single-live cell and cilia imaging with 5HT6-mCherry-G-GECO1.0. The images show 
(from left to right column) DIC used for tracking a cilium, mCherry fluorescent ciliary marker, 
the Ca2+ sensitive GECO1.0 and an EGFP/mCherry ratio pseudocolored to show Ca+ levels. 
When fluid flow is applied (time series from top to bottom), the cilium bends inducing a Ca2+ 
increase in both the cytoplasm and cilioplasm. Adapted with permission from Pala, R., 
Mohieldin, A. M., Shamloo, K., Sherpa, R. T., Kathem, S. H., Zhou, J., … Nauli, S. M. 
Personalized Nanotherapy by Specifically Targeting Cell Organelles To Improve Vascular 
Hypertension. Nano Letters Copyright 2018 American Chemical Society. 
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For quantification, this process is done for all time points in the time series file and exported to a 

suitable format for statistical analysis. Multiple experiments will confirm the response seen 

during stimulation with fluid flow. There might be cases with movement artifacts or fluorescent 

aggregates, appearing in the field of view after flow initiation. These might introduce significant 

deviations, but with the help of mCherry, we can evaluate the Ca2+-independent signal deviations 

and determine the viability of the data. 

 

Conclusion 

A typical experimental result will provide EGFP and mCherry intensities for the cilioplasm and 

cytoplasm in response to fluid flow over time which can be presented as a time series plot or a 

comparative bar graph showing Ca2+ levels. A plot of the EGFP as a function of time will show 

an expected increase in signal intensity upon addition of fluid flow. Upon cessation of fluid flow, 

the increase in EGFP returns to baseline. The treatment with ionomycin/EGTA causes a transient 

increase due to the extracellular Ca2+ entry from the ionomycin-induced pore formation followed 

by a slow decline in Ca2+ signal due to the Ca2+ chelator EGTA. Subsequent treatment with 

higher Ca2+ should increase the signal intensity to a level higher than that observed with fluid 

flow. The presence of mCherry provides the opportunity to apply ratiometric analysis and 

elimination of Ca2+ related artifacts. Moreover, the time-lapse images can be compiled into a 

movie to observe Ca2+ increases in the cilioplasm and cytoplasm.  



www.manaraa.com

 

42 
 

References 

1. Akerboom, J., Chen, T.-W., Wardill, T. J., Tian, L., Marvin, J. S., Mutlu, S., … Looger, L. L. 
(2012). Optimization of a GCaMP calcium indicator for neural activity imaging. The Journal of 
Neuroscience : The Official Journal of the Society for Neuroscience, 32(40), 13819–13840. 
https://doi.org/10.1523/JNEUROSCI.2601-12.2012 

2. Akerboom, J., Rivera, J. D. V., Guilbe, M. M. R., Malavé, E. C. A., Hernandez, H. H., Tian, 
L., … Schreiter, E. R. (2009). Crystal structures of the GCaMP calcium sensor reveal the 
mechanism of fluorescence signal change and aid rational design. The Journal of Biological 
Chemistry, 284(10), 6455–6464. https://doi.org/10.1074/jbc.M807657200 

3. Berbari, N. F., Johnson, A. D., Lewis, J. S., Askwith, C. C., & Mykytyn, K. (2008). Identification 
of Ciliary Localization Sequences within the Third Intracellular Loop of G Protein-coupled 
Receptors. Molecular Biology of the Cell. https://doi.org/10.1091/mbc.E07-09-0942 

4. Breslow, D. K., Koslover, E. F., Seydel, F., Spakowitz, A. J., & Nachury, M. V. (2013). An in 
vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier. The 
Journal of Cell Biology, 203(1), 129–147. https://doi.org/10.1083/jcb.201212024 

5. Brini, M., Pasti, L., Bastianutto, C., Murgia, M., Pozzan, T., & Rizzuto, R. (1994). Targeting of 
aequorin for calcium monitoring in intracellular compartments. Journal of Bioluminescence and 
Chemiluminescence, 9(3), 177–184. https://doi.org/10.1002/bio.1170090312 

6. Brown, D. C., & Larson, R. S. (2001). Improvements to parallel plate flow chambers to reduce 
reagent and cellular requirements. BMC Immunology. https://doi.org/10.1186/1471-2172-2-9 

7. Chen, T.-W., Wardill, T. J., Sun, Y., Pulver, S. R., Renninger, S. L., Baohan, A., … Kim, D. S. 
(2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature, 499(7458), 295–
300. https://doi.org/10.1038/nature12354 

8. Christensen, S. T., Clement, C. A., Satir, P., & Pedersen, L. B. (2012). Primary cilia and 
coordination of receptor tyrosine kinase (RTK) signalling. The Journal of Pathology, 226(2), 
172–184. https://doi.org/10.1002/path.3004 

9. Cobbold, P. H., & Rink, T. J. (1987). Fluorescence and bioluminescence measurement of 
cytoplasmic free calcium. The Biochemical Journal, 248(2), 313–328. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/3325037 

10. DeCaen, P. G., Delling, M., Vien, T. N., & Clapham, D. E. (2013). Direct recording and 
molecular identification of the calcium channel of primary cilia. Nature, 504(7479), 315–318. 
https://doi.org/10.1038/nature12832 

11. Delmas, P., Nomura, H., Li, X., Lakkis, M., Luo, Y., Segal, Y., … Zhou, J. (2002). Constitutive 
activation of G-proteins by polycystin-1 is antagonized by polycystin-2. Journal of Biological 
Chemistry. https://doi.org/10.1074/jbc.M110483200 

12. Delous, M., Baala, L., Salomon, R., Laclef, C., Vierkotten, J., Tory, K., … Saunier, S. (2007). 
The ciliary gene RPGRIP1L is mutated in cerebello-oculo-renal syndrome (Joubert syndrome 
type B) and Meckel syndrome. Nature Genetics, 39(7), 875–881. https://doi.org/10.1038/ng2039 

13. Ebashi, S., & Endo, M. (1968). Calcium ion and muscle contraction. Progress in Biophysics and 
Molecular Biology, 18, 123–183. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/4894870 

14. Falcone, J. C., Kuo, L., & Meininger, G. A. (1993). Endothelial cell calcium increases during 
flow-induced dilation in isolated arterioles. The American Journal of Physiology, 264(2 Pt 2), 
H653-9. https://doi.org/10.1152/ajpheart.1993.264.2.H653 

15. Filippin, L., Abad, M. C., Gastaldello, S., Magalhães, P. J., Sandonà, D., & Pozzan, T. (2005). 
Improved strategies for the delivery of GFP-based Ca2+ sensors into the mitochondrial matrix. 
Cell Calcium, 37(2), 129–136. https://doi.org/10.1016/j.ceca.2004.08.002 

16. Fliegauf, M., Horvath, J., von Schnakenburg, C., Olbrich, H., Müller, D., Thumfart, J., … Omran, 
H. (2006). Nephrocystin Specifically Localizes to the Transition Zone of Renal and Respiratory 
Cilia and Photoreceptor Connecting Cilia. Journal of the American Society of Nephrology, 17(9), 



www.manaraa.com

 

43 
 

2424–2433. https://doi.org/10.1681/ASN.2005121351 
17. Follit, J. A., Li, L., Vucica, Y., & Pazour, G. J. (2010). The cytoplasmic tail of fibrocystin 

contains a ciliary targeting sequence. The Journal of Cell Biology, 188(1), 21–28. 
https://doi.org/10.1083/jcb.200910096 

18. Forder, J., Scriabine, A., & Rasmussen, H. (1985). Plasma membrane calcium flux, protein kinase 
C activation and smooth muscle contraction. The Journal of Pharmacology and Experimental 
Therapeutics, 235(2), 267–273. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2414429 

19. Gilula, N. B., & Satir, P. (1972). The ciliary necklace. A ciliary membrane specialization. The 
Journal of Cell Biology, 53(2), 494–509. Retrieved from 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2108734&tool=pmcentrez&rendertyp
e=abstract 

20. Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharias, D. A., & Tsien, R. Y. (2001). Reducing 
the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. Journal 
of Biological Chemistry. https://doi.org/10.1074/jbc.M102815200 

21. Hanaoka, K., Qian, F., Boletta, A., Bhunia, A. K., Piontek, K., Tsiokas, L., … Germino, G. G. 
(2000). Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature, 
408(6815), 990–994. https://doi.org/10.1038/35050128 

22. Haycraft, C. J., Banizs, B., Aydin-Son, Y., Zhang, Q., Michaud, E. J., & Yoder, B. K. (2005). 
Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for 
processing and function. PLoS Genetics, 1(4), e53. https://doi.org/10.1371/journal.pgen.0010053 

23. Hu, Q., Milenkovic, L., Jin, H., Scott, M. P., Nachury, M. V., Spiliotis, E. T., & Nelson, W. J. 
(2010). A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane 
protein distribution. Science. https://doi.org/10.1126/science.1191054 

24. Huang, P., & Schier, A. F. (2009). Dampened Hedgehog signaling but normal Wnt signaling in 
zebrafish without cilia. Development, 136(18), 3089–3098. https://doi.org/10.1242/dev.041343 

25. Ishikawa, H., Thompson, J., Yates, J. R., Marshall, W. F., & Marshall, W. F. (2012). Proteomic 
analysis of mammalian primary cilia. Current Biology : CB, 22(5), 414–419. 
https://doi.org/10.1016/j.cub.2012.01.031 

26. Jin, X., Mohieldin, A. M., Muntean, B. S., Green, J. A., Shah, J. V., Mykytyn, K., & Nauli, S. M. 
(2014). Cilioplasm is a cellular compartment for calcium signaling in response to mechanical and 
chemical stimuli. Cellular and Molecular Life Sciences : CMLS, 71(11), 2165–2178. 
https://doi.org/10.1007/s00018-013-1483-1 

27. Johns, A., Lategan, T. W., Lodge, N. J., Ryan, U. S., Van Breemen, C., & Adams, D. J. (1987). 
Calcium entry through receptor-operated channels in bovine pulmonary artery endothelial cells. 
Tissue and Cell, 19(6), 733–745. https://doi.org/10.1016/0040-8166(87)90015-2 

28. Kathem, S. H., Mohieldin, A. M., Abdul-Majeed, S., Ismail, S. H., Altaei, Q. H., Alshimmari, I. 
K., … Nauli, S. M. (2014). Ciliotherapy: a novel intervention in polycystic kidney disease. 
Journal of Geriatric Cardiology : JGC, 11(1), 63–73. https://doi.org/10.3969/j.issn.1671-
5411.2014.01.001 

29. Kerr, R., Lev-Ram, V., Baird, G., Vincent, P., Tsien, R. Y., & Schafer, W. R. (2000). Optical 
imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron. 
https://doi.org/10.1016/S0896-6273(00)81196-4 

30. Lee, K. L., Guevarra, M. D., Nguyen, A. M., Chua, M. C., Wang, Y., & Jacobs, C. R. (2015). The 
primary cilium functions as a mechanical and calcium signaling nexus. Cilia, 4, 7. 
https://doi.org/10.1186/s13630-015-0016-y 

31. Liem, K. F., Ashe, A., He, M., Satir, P., Moran, J., Beier, D., … Anderson, K. V. (2012). The 
IFT-A complex regulates Shh signaling through cilia structure and membrane protein trafficking. 
The Journal of Cell Biology, 197(6), 789–800. https://doi.org/10.1083/jcb.201110049 

32. Malone, A. M. D., Anderson, C. T., Tummala, P., Kwon, R. Y., Johnston, T. R., Stearns, T., & 
Jacobs, C. R. (2007). Primary cilia mediate mechanosensing in bone cells by a calcium-
independent mechanism. Proceedings of the National Academy of Sciences of the United States of 



www.manaraa.com

 

44 
 

America, 104(33), 13325–13330. https://doi.org/10.1073/pnas.0700636104 
33. Mank, M., Santos, A. F., Direnberger, S., Mrsic-Flogel, T. D., Hofer, S. B., Stein, V., … 

Griesbeck, O. (2008). A genetically encoded calcium indicator for chronic in vivo two-photon 
imaging. Nature Methods. https://doi.org/10.1038/nmeth.1243 

34. Masyuk, A. I., Masyuk, T. V., Splinter, P. L., Huang, B. Q., Stroope, A. J., & LaRusso, N. F. 
(2006). Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into 
intracellular Ca2+ and cAMP signaling. Gastroenterology, 131(3), 911–920. 
https://doi.org/10.1053/j.gastro.2006.07.003 

35. Miyawaki, A., Llopis, J., Heim, R., Michael McCaffery, J., Adams, J. A., Ikura, M., & Tsien, R. 
Y. (1997). Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. 
Nature. https://doi.org/10.1038/42264 

36. Mollet, G., Silbermann, F., Delous, M., Salomon, R., Antignac, C., & Saunier, S. (2005). 
Characterization of the nephrocystin/nephrocystin-4 complex and subcellular localization of 
nephrocystin-4 to primary cilia and centrosomes. Human Molecular Genetics, 14(5), 645–656. 
https://doi.org/10.1093/hmg/ddi061 

37. Mukhopadhyay, S., Wen, X., Chih, B., Nelson, C. D., Lane, W. S., Scales, S. J., & Jackson, P. K. 
(2010). TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote 
trafficking of G protein-coupled receptors into primary cilia. Genes & Development, 24(19), 
2180–2193. https://doi.org/10.1101/gad.1966210 

38. Nagai, T., Sawano, A., Park, E. S., & Miyawaki, A. (2001). Circularly permuted green 
fluorescent proteins engineered to sense Ca2+. Proceedings of the National Academy of Sciences. 
https://doi.org/10.1073/pnas.051636098 

39. Nagai, T., Yamada, S., Tominaga, T., Ichikawa, M., & Miyawaki, A. (2004). Expanded dynamic 
range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. 
Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.0400417101 

40. Nakai, J., Ohkura, M., & Imoto, K. (2001). A high signal-to-noise Ca2+ probe composed of a 
single green fluorescent protein. Nature Biotechnology, 19(2), 137–141. 
https://doi.org/10.1038/84397 

41. Nauli, S. M., Alenghat, F. J., Luo, Y., Williams, E., Vassilev, P., Li, X., … Zhou, J. (2003). 
Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nature 
Genetics, 33(2), 129–137. https://doi.org/10.1038/ng1076 

42. Nauli, S. M., Jin, X., AbouAlaiwi, W. A., El-Jouni, W., Su, X., & Zhou, J. (2013). Non-Motile 
Primary Cilia as Fluid Shear Stress Mechanosensors. In Methods in enzymology (Vol. 525, pp. 1–
20). https://doi.org/10.1016/B978-0-12-397944-5.00001-8 

43. Nauli, S. M., Kawanabe, Y., Kaminski, J. J., Pearce, W. J., Ingber, D. E., & Zhou, J. (2008). 
Endothelial Cilia Are Fluid Shear Sensors That Regulate Calcium Signaling and Nitric Oxide 
Production Through Polycystin-1. Circulation, 117(9), 1161–1171. 
https://doi.org/10.1161/CIRCULATIONAHA.107.710111 

44. Nauli, S. M., Pala, R., & Kleene, S. J. (2016). Calcium channels in primary cilia. Current Opinion 
in Nephrology and Hypertension, 25(5), 452–458. 
https://doi.org/10.1097/MNH.0000000000000251 

45. Nauli, S. M., Sherpa, R. T., Reese, C. J., & Nauli, A. M. (2016). Mechanosensory and 
Chemosensory Primary Cilia in Ciliopathy and Ciliotherapy. In Mechanobiology (pp. 75–99). 
Hoboken, NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/9781118966174.ch5 

46. Otto, E. A., Loeys, B., Khanna, H., Hellemans, J., Sudbrak, R., Fan, S., … Hildebrandt, F. 
(2005). Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and 
interacts with RPGR and calmodulin. Nature Genetics, 37(3), 282–288. 
https://doi.org/10.1038/ng1520 

47. Otto, E. A., Schermer, B., Obara, T., O’Toole, J. F., Hiller, K. S., Mueller, A. M., … Hildebrandt, 
F. (2003). Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal 
cystic disease to the function of primary cilia and left-right axis determination. Nature Genetics, 



www.manaraa.com

 

45 
 

34(4), 413–420. https://doi.org/10.1038/ng1217 
48. Pala, R., Mohieldin, A. M., Shamloo, K., Sherpa, R. T., Kathem, S. H., Zhou, J., … Nauli, S. M. 

(2018). Personalized Nanotherapy by Specifically Targeting Cell Organelles To Improve 
Vascular Hypertension. Nano Letters, acs.nanolett.8b04138. 
https://doi.org/10.1021/acs.nanolett.8b04138 

49. Palmer, A. E., Giacomello, M., Kortemme, T., Hires, S. A., Lev-Ram, V., Baker, D., & Tsien, R. 
Y. (2006). Ca2+ Indicators Based on Computationally Redesigned Calmodulin-Peptide Pairs. 
Chemistry and Biology. https://doi.org/10.1016/j.chembiol.2006.03.007 

50. Palmer, A. E., Jin, C., Reed, J. C., & Tsien, R. Y. (2004). Bcl-2-mediated alterations in 
endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. 
Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.0408030101 

51. Pazour, G. J., Agrin, N., Leszyk, J., & Witman, G. B. (2005). Proteomic analysis of a eukaryotic 
cilium. The Journal of Cell Biology, 170(1), 103–113. https://doi.org/10.1083/jcb.200504008 

52. Pazour, G. J., Dickert, B. L., & Witman, G. B. (1999). The DHC1b (DHC2) isoform of 
cytoplasmic dynein is required for flagellar assembly. The Journal of Cell Biology, 144(3), 473–
481. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9971742 

53. Pérez Koldenkova, V., & Nagai, T. (2013). Genetically encoded Ca2+indicators: Properties and 
evaluation. Biochimica et Biophysica Acta - Molecular Cell Research. 
https://doi.org/10.1016/j.bbamcr.2013.01.011 

54. Praetorius, H. A., & Spring, K. R. (2001). Bending the MDCK cell primary cilium increases 
intracellular calcium. The Journal of Membrane Biology, 184(1), 71–79. 
https://doi.org/10.1007/s00232-001-0075-4 

55. Praetorius, H. A., & Spring, K. R. (2003). Removal of the MDCK Cell Primary Cilium Abolishes 
Flow Sensing. Journal of Membrane Biology, 191(1), 69–76. https://doi.org/10.1007/s00232-002-
1042-4 

56. Romoser, V. A., Hinkle, P. M., & Persechini, A. (1997). Detection in living cells of Ca2+-
dependent changes in the fluorescence emission of an indicator composed of two green 
fluorescent protein variants linked by a calmodulin-binding sequence. A new class of fluorescent 
indicators. The Journal of Biological Chemistry, 272(20), 13270–13274. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/9148946 

57. Rudolf, R., Mongillo, M., Rizzuto, R., & Pozzan, T. (2003). Looking forward to seeing calcium. 
Nature Reviews Molecular Cell Biology, 4(7), 579–586. https://doi.org/10.1038/nrm1153 

58. Sabatini, B. L., Oertner, T. G., & Svoboda, K. (2002). The life cycle of Ca2+ ions in dendritic 
spines. Neuron. https://doi.org/10.1016/S0896-6273(02)00573-1 

59. Satir, P. (2017). CILIA: before and after. Cilia, 6(1), 1. https://doi.org/10.1186/s13630-017-0046-
8 

60. Schou, K. B., Pedersen, L. B., & Christensen, S. T. (2015). Ins and outs of GPCR signaling in 
primary cilia. EMBO Reports, 16(9), 1099–1113. https://doi.org/10.15252/embr.201540530 

61. Singla, V., & Reiter, J. F. (2006). The primary cilium as the cell’s antenna: signaling at a sensory 
organelle. Science (New York, N.Y.), 313(5787), 629–633. 
https://doi.org/10.1126/science.1124534 

62. Sorokin, S. (1962). Centrioles and the formation of rudimentary cilia by fibroblasts and smooth 
muscle cells. The Journal of Cell Biology, 15(2), 363–377. https://doi.org/10.1083/jcb.15.2.363 

63. Sorokin, S. P. (1968). Reconstructions of centriole formation and ciliogenesis in mammalian 
lungs. Journal of Cell Science, 3(2), 207–230. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/5661997 

64. Souslova, E. A., Belousov, V. V, Lock, J. G., Strömblad, S., Kasparov, S., Bolshakov, A. P., … 
Chudakov, D. M. (2007). Single fluorescent protein-based Ca2+sensors with increased dynamic 
range. BMC Biotechnology, 7(1), 37. https://doi.org/10.1186/1472-6750-7-37 

65. Su, S., Phua, S. C., Derose, R., Chiba, S., Narita, K., Kalugin, P. N., … Inoue, T. (2013). 
Genetically encoded calcium indicator illuminates calcium dynamics in primary cilia. Nature 



www.manaraa.com

 

46 
 

Methods. https://doi.org/10.1038/nmeth.2647 
66. Tian, L., Hires, S. A., Mao, T., Huber, D., Chiappe, M. E., Chalasani, S. H., … Looger, L. L. 

(2009). Imaging neural activity in worms, flies and mice with improved GCaMP calcium 
indicators. Nature Methods, 6(12), 875–881. https://doi.org/10.1038/nmeth.1398 

67. Valente, E. M., Logan, C. V, Mougou-Zerelli, S., Lee, J. H., Silhavy, J. L., Brancati, F., … 
Gleeson, J. G. (2010). Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel 
and related syndromes. Nature Genetics, 42(7), 619–625. https://doi.org/10.1038/ng.594 

68. Wier, W., Cannell, M., Berlin, M., Marban, E., & Lederer, W. (1987). Cellular and subcellular 
heterogeneity of [Ca2+]i in single heart cells revealed by fura-2. Science, 235(4786), 325–328. 
https://doi.org/10.1126/science.3798114 

69. Williams, C. L., Masyukova, S. V., & Yoder, B. K. (2010). Normal Ciliogenesis Requires 
Synergy between the Cystic Kidney Disease Genes MKS-3 and NPHP-4. Journal of the 
American Society of Nephrology, 21(5), 782–793. https://doi.org/10.1681/ASN.2009060597 

70. Williams, C. L., Winkelbauer, M. E., Schafer, J. C., Michaud, E. J., & Yoder, B. K. (2008). 
Functional Redundancy of the B9 Proteins and Nephrocystins in Caenorhabditis elegans 
Ciliogenesis. Molecular Biology of the Cell, 19(5), 2154–2168. https://doi.org/10.1091/mbc.e07-
10-1070 

71. Williams, D. A., Fogarty, K. E., Tsien, R. Y., & Fay, F. S. (1985). Calcium gradients in single 
smooth muscle cells revealed by the digital imaging microscope using Fura-2. Nature, 318(6046), 
558–561. https://doi.org/10.1038/318558a0 

72. Xu, C., Rossetti, S., Jiang, L., Harris, P. C., Brown-Glaberman, U., Wandinger-Ness, A., … 
Alper, S. L. (2006). Human ADPKD primary cyst epithelial cells with a novel, single codon 
deletion in the PKD1 gene exhibit defective ciliary polycystin localization and loss of flow-
induced Ca2+ signaling. AJP: Renal Physiology, 292(3), F930–F945. 
https://doi.org/10.1155/2013/715848 

73. Yuan, S., Zhao, L., Brueckner, M., & Sun, Z. (2015). Intraciliary Calcium Oscillations Initiate 
Vertebrate Left-Right Asymmetry. Current Biology, 25(5), 556–567. 
https://doi.org/10.1016/j.cub.2014.12.051 

74. Zhao, Y., Araki, S., Wu, J., Teramoto, T., Chang, Y. F., Nakano, M., … Campbell, R. E. (2011). 
An expanded palette of genetically encoded Ca2+indicators. Science. 
https://doi.org/10.1126/science.1208592 



www.manaraa.com

 

47 
 

Chapter 4. The Role of the Primary Cilium in Sensing Extracellular pH.* 

 

Abstract 

Biosensors on the membrane of the vascular endothelium are responsible for sensing mechanical 

and chemical signals in the blood. Transduction of these stimuli into intracellular signaling 

cascades regulate cellular processes including ion transport, gene expression, cell proliferation, 

and/or cell death. The primary cilium is a well-known biosensor of shear stress but its role in 

sensing extracellular pH change has never been examined. As a cellular extension into the 

immediate microenvironment, the cilium could be a prospective sensor for changes in pH and 

regulator of acid response in cells. We aim to test our hypothesis that the primary cilium plays 

the role of an acid sensor in cells using vascular endothelial and embryonic fibroblast cells as in 

vitro models. We measure changes in cellular pH using pH-sensitive 2′,7′-biscarboxyethy1-5,6-

carboxyfluorescein acetoxy-methylester (BCECF) fluorescence and mitogen-activated protein 

kinase (MAPK) activity to quantify responses to both extracellular pH (pHo) and intracellular pH 

(pHi) changes. Our studies show that changes in pHo affect pHi in both wild-type and cilia-less 

Tg737 cells and that the kinetics of the pHi response are similar in both cells. Acidic pHo or pHi 

was observed to change the length of primary cilia in wild-type cells while the cilia in Tg737 

remained absent. Vascular endothelial cells respond to acidic pH through activation of ERK1/2 

and p38-mediated signaling pathways. The cilia-less Tg737 cells exhibit delayed responsiveness 

to pHo dependent and independent pHi acidification as depicted in the phosphorylation profile of 

ERK1/2 and p38. Otherwise, intracellular pH homeostatic response to acidic pHo is similar 

between wild-type and Tg737 cells, indicating that the primary cilia may not be the sole sensor 

for physiological pH changes. These endothelial cells respond to pH changes with a 

predominantly K+-dependent pHi recovery mechanism, regardless of ciliary presence or absence. 

 
* Atkinson KF, Sherpa RT, Nauli SM. The Role of the Primary Cilium in Sensing Extracellular 
pH. Cells. 2019 Jul 11;8(7):704. doi: 10.3390/cells8070704. 
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Figure 9. We adopt two ways to alter intracellular pH (pHi); (1) Extracellular pH mediated pHi 
change and (2) ammonium pre-pulse mediated pHi change. These methods will be used to test 
our hypothesis that the primary cilium acts as a pH sensor. The ammonium pre-pulse 
acidification technique selectively lowers intracellular pH. Addition of ammonium chloride 
(NH4Cl) to the media produces ammonia (NH3) and H+. There is an influx of NH3 into the 
cytoplasm which combines with intracellular H+, resulting in pHi alkalization. Removal of 
external NH4Cl causes an efflux of intracellular NH3, leaving H+ ions behind in the cytoplasm 
and causing pHi acidification. Typical homeostatic pHi recovery involves acid extrusion 
mechanisms, including anion/H+ symporters and Na+/H+ exchanger which is coupled with 
Na+/K+-ATPase. Changes to pHi are also observed through activation of mitogen-activated 
protein kinases, such as extracellular signal-related kinase (ERK1/2) and p38. 

 

1. Introduction 

The normal blood pH level is tightly maintained between 7.35 and 7.45 by the renal and 

respiratory systems along with buffering mediators in the blood. Lowering of blood pH < 7.35 or 

acidosis causes several symptoms such as drowsiness, exhaustion, and arrhythmia depending on 

the type of acidosis. More dramatic changes in pH will induce cytotoxicity and neuronal cell 
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death. The vascular endothelium, which also regulates physical dynamics of blood such as local 

blood flow and pressure, is best suited to measure local circulating blood pH. Any pH sensor in 

the body needs to be responsive to extracellular pH fluctuations and regulate downstream 

mechanisms for homeostatic adaptation. Such adaptation mechanisms include local activation of 

ion transporters and modulation of channel activity to balance the intracellular ionic gradient, 

while global regulation is achieved by adjusting the ventilation or renal excretion. 

 

Several studies have shown that mitogen-activated protein kinases (MAPKs) are activated by 

changes in pH [1,2]. The three known MAPKs, extracellular signal-regulated kinase (ERK1/2 

aka p32/p44), p38, and JNK1/2, respond to a variety of environmental stimuli to mediate gene 

expression, ion transport, cell proliferation, and/or apoptosis [3]. ERK1/2 phosphorylation 

regulates acid-stimulated vacuolar H+-ATPase and Na+/H+ exchanger (NHE) activation [1,4]. 

When intracellular pH becomes acidic, ERK1/2 activation acts in parallel with Pyk2 kinase to 

increase NHE3 activity [5,6]. The MAPK, p38 is activated by various extracellular stress stimuli 

such as UV light, heat, inflammatory cytokines, and pH changes. Depending on the initial 

stimuli, substrates of activated p38 include transcription factors and the MAP kinase-activated 

protein kinase 2 (MK2). MK2 subsequently activates various small heat shock protein 27 

(HSP27), lymphocyte-specific protein 1 (LSP1), cAMP response element-binding protein 

(CREB) among others [7,8]. 

 

In the present study, we explore if the primary cilia, distinct from motile cilia in the brain 

ventricles or Hensen’s node, have a role in acid pH sensation in endothelial cells. Our interest 

arises from the fact that the primary cilium, a solitary extension of the cell, has been implicated 

in the sensation of mechanical forces and chemical cues [9–12]. With the localization of various 

ion channels, G protein-coupled receptors and receptor-cytoskeletal proteins in the ciliary 

membrane, the primary cilium is a candidate biosensor that responds to a variety of stimuli [13]. 

Numerous studies have shown that cilia regulate cytosolic calcium influx and intracellular 

calcium release upon application of shear stress [12,14–16]. The response to blood flow-induced 

shear stress is very important in the regulation of blood pressure, vascular tone, and vasodilation 

[13]. As a cellular structure that protrudes out to the vascular lumen and remains in contact with 

the extracellular milieu, the cilia are poised to be a sensory extension. A recent study on 
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Zebrafish showed localization of acid-sensing ion channels (ASICs), which are proton-gated 

cation channels, in the cilia of the non-sensory olfactory cell [17]. ASICs are Na+ channels 

activated by external protons and exhibit a rapid response to reduction in extracellular pH (pHo) 

below pH 6.9 [18]. Another Na+ channel, the alpha-epithelial sodium channel, has been 

immunodetected in the cilia and are regulated by flow as well as acidic pHo through Na+ gating 

phenomenon of self-inhibition [19–21]. 

 

A study by Banizs et al. on cilia-less Tg737 mice shows that Tg737 mice have lower intrinsic 

buffering power when challenged with a weak acid NH4+ compared to wild-type mice [22]. This 

indicates that primary cilia might be involved in either sensing pHo change or regulating 

intracellular pH (pHi) in response to pHo changes through ciliary ion transport activity. With the 

evidence that pH sensitive channels are selectively localized in the cilia of the non-sensory 

olfactory epithelium [17] and the cilium is known as a sensory organelle of the extracellular 

milieu [9,12,23,24], we hypothesize that primary cilia could function as pH sensors. We, 

therefore, examine the role of the primary cilia in acid-activation of MAPK signaling pathways 

in endothelial cells. We compare the acid response of cilia-less Tg737 endothelial cells to their 

wild-type counterparts to examine a possible pH sensing role of the primary cilia. 

 

2. Materials and Methods 

2.1. Cell Culture 

Previously isolated and characterized vascular endothelial cells (Tg737+/+ and Tg737−/−) were 

used for the study [23,25]. These cell lines were generated from the same littermates of Tg737+/− 

mice with Balb/C background. The Tg737 gene encodes for polaris, a structural protein for cilia 

[26]. These endothelial cells were also immortalized from mice carrying the simian virus-40 

(SV40) gene. The promoter of SV40 is regulated by temperature and IFN-γ. As such, cells were 

grown under permissive conditions in the presence of 0.75 μg/L IFN-γ at 33 °C express SV40 

large T antigen regardless of the status of their confluence. The permissive conditions allow cells 

to hyper-proliferate. When switched to non-permissive conditions in the absence of IFN-γ at 

37 °C, the endothelial cells completely shut down the SV40 gene. Cells under the non-permissive 

conditions are readily differentiated [23,25]. 
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These cells express common markers for endothelial cells, including eNOS, ICAM-2 (CD102), 

PECAM-1 (CD31), VE-cadherin (CD144), readily responding to acetylcholine, forming 

endothelial barrier integrity and having functional intracellular calcium signaling, focal adhesion 

kinase, calmodulin, Akt/PKB, protein kinase C and eNOS activity [23,25,27]. Aside from 

abnormal mechanosensory function due to lacking primary cilia, the Tg737 cilia-less cells also 

have abnormal cell division [28,29]. Three days prior to experiments, cells were cultured under 

sterile conditions and maintained at 37 oC in a 5% CO2 incubator. Cells were kept in Dulbecco’s 

Modification of Eagle’s Medium (DMEM), media with 4.5 g/L glucose, L-glutamate, and 

sodium pyruvate (Corning Cellgro) containing 2% fetal bovine serum (FBS) and 5% 

penicillin/streptomycin. DMEM with 2% FBS is a low serum condition that promotes ciliation 

[30]. For NIH3T3 fibroblast cells, growth media consisting of 10% bovine calf serum (BCS) and 

5% penicillin/streptomycin in DMEM was used. Cells were grown on poly-l-lysine coated cover 

glass and incubated with low serum media (2% BCS, 5% penicillin/streptomycin and DMEM) to 

promote ciliation. To investigate Hedgehog (Hh) signaling in various pHo, purmorphamine 

(Sigma-Aldrich, St. Louis, MO, USA) at a final concentration of 10 μM was used as a positive 

control. Purmorphamine was added and incubated for 1 h with the cells to induce Hh activation. 

 

2.2. Decreased Extracellular pH (pHo) 

Physiological saline solution (PSS; Table 1) was adjusted to pHo 5.5, 6.0, 6.5, and 7.0 from pH 

7.4 (control) using 100 mM HCl. For immunoblot, each 35-mm dish was exposed to media of a 

given pH for 10 min. Control cells underwent similar treatment with vehicle. Cells were 

trypsinized and 106 cells transferred into 100 µL 2× Laemelli Sample Buffer (BioRad, Hercules, 

CA, USA) containing β-mercaptoethanol. Samples were sonicated and heated at 100 °C for 5 

min. For tracings of pHi measurement, BCECF-AM-loaded cells were exposed to media of each 

pHo, one at a time for 10 min, sequentially from pHo 7.4 to 5.5. In all our experiments, we 

maintained our solution osmolality between 290–300 mOsm/L. 

 

2.3. Decreased Intracellular pH (pHi) 

The NH4Cl pulse was used to alter pHi using a series of solutions, as previously described [1] 

and shown in Table 1. All solutions were adjusted to pHo 7.4 and maintained at 37 °C with 

osmolality between 290–300 mOsm/L. PSS was added to the cells for 5 min, then aspirated. The 
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NH4Cl solution (20 mM NH4Cl) was then added to cells until intracellular pH stabilized, then 

aspirated. The cells were immediately incubated in 0K+/0Na+ solution, causing dissociation of 

intracellular NH4, releasing protons into the cytosol, thus decreasing pHi. pHi recovery was 

accomplished by adding 5K+/0Na+ solution (5 mM KCl) to the cells and incubation in PSS. 

Table 5. Composition of solutions used in the NH4Cl pre-pulse. Solution names are listed along 
the first row, and the composition of each is shown in each column. Components of each solution 
are in mM. HEPES = (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid); NMDG = N-
methyl-D-glucamine. 

Solution PSS NH4Cl 0K+/0Na+ 5K+/0Na+ 
CaCl2  1.8 1.8 1.8 1.8 

MgSO4  0.8 0.8 0.8 0.8 
Glucose  5.5 5.5 5.5 5.5 
HEPES   10 10 10 10 
NaCl  135 0 0 0 
KCl  5 0 0 5 

NH4Cl  0 20 0 0 
NMDG 0 120 140 135 

 

2.4. Intracellular pH Measurement 

Intracellular pH was measured with 2′,7′-biscarboxyethy1-5,6-carboxyfluorescein acetoxy-

methylester (BCECF-AM; Molecular Probes, #B1150, Invitrogen, Eugene, OR, USA). Wild-

type and Tg737 cells were incubated with 5 μM BCECF-AM for 15 min at 37 °C. Images were 

acquired with a Nikon Eclipse Ti-E inverted microscope using 40× objective and NIS-Elements 

imaging software (version 4.30, Melville, NY, USA, 2016). Intracellular pH measurements were 

recorded with emission intensity at wavelength 535 nm. The ratio of emission intensity was 

determined through excitation wavelengths of pH-dependent 490 nm and an isosbestic point 440 

nm. BCECF fluorescence ratio intensity was calibrated to represent intracellular pH using H+ 

ionophore nigericin-containing solutions (Sigma-Aldrich, #N7143). This calibration was 

performed at the end of each experiment. 20 μM nigericin was used to equilibrate pHo and pHi to 

pH values of 5.5, 6.0, 6.5, 7.0 and 7.4. Once the 490/440 ratio for each calibration pH value was 

obtained, the ratio values were fitted to a sigmoidal plot. Subsequent experimental ratios were 

converted to the pH values. 
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2.5. Immunoblot 

All extracellular and intracellular pH manipulations were performed in the same manner for both 

pH measurement and Western blot analysis. 35 mm dishes were each lysed at different steps of 

decreased pHo or pHi with NH4Cl pre-pulse. Control cells underwent similar treatment with 

vehicle. Immunoblot of the lysates was used to analyze the phosphorylation of p38 and ERK1/2 

in response to decreased pHo or during the different steps of the NH4Cl pre-pulse. Blots were 

probed for β-actin to confirm equal protein loading. Membranes were blocked for 1 h then 

incubated with primary antibody for 2 h. Primary antibodies include: anti-ERK1/2 (Cell 

Signaling, #9101), anti-phospho-ERK1/2 (Cell Signaling, #9102), anti-p38 (Abcam, #ab7952), 

anti-phospho-p38 (Abcam, #ab45381), or anti-β-actin (CellBioLabs, #AKR-002). Cells were 

rinsed 3× for 10 min then incubated in secondary antibody for 1 h. Secondary antibodies include 

anti-mouse IgG, HRP-linked (Cell Signaling Technologies, #7076) or anti-rabbit IgG, HRP-

linked (Cell Signaling Technologies, #7074). After rinsing three times for 10 min each, 

membranes were visualized using SuperSignaling West Pico Luminol Enhancers solution 

(Thermo Scientific, #1859675) and detected with the ChemiDoc from BioRad. Images were 

acquired and analyzed using ImageLab3.0 software. 

 

2.6. Primary Cilia Immunostaining 

Cells were grown to confluence on coverslips according to the cell culture conditions mentioned 

above. The cells were then exposed to media with pH of 5.5, 6.0, 6.5, 7.0 and 7.4 (control) for 5 

min. The cells were fixed using 4% paraformaldehyde and 2% sucrose in PBS for 10 min and 

permeabilized for 5 min in 10% Triton X-100. The cells were incubated with Gli antibody (1:200 

dilution in PBS, Abcam, Cambridge, MA, USA) for 16 h at 4 °C, acetylated-α-tubulin (1:10,000 

dilution in PBS, Sigma Aldrich, St. Louis, MO, USA) for 1 h at 27 °C followed by fluorescein 

isothiocyanate (FITC)-conjugated anti-mouse antibody then Texas-red conjugated anti-rabbit 

antibody (1:1000 dilution in PBS, Vector Labs Burlingame, CA) for 1 h at 27 °C. Slides were 

mounted with DAPI hard set mounting media (Southern Biotech, Birmingham, AL, USA) 

Images were acquired using a Nikon Eclipse Ti-E inverted microscope with the NIS-Elements 

imaging software (version 4.30) in 100× magnification fields with z-stack slices of 0.25 μm. Flat 

cilia defined by consistent length in four z-slices were measured [31]. The majority of our cilia 
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were flattened on the slide surface, and cilia were measured in three-dimensionally (3D). We 

used Nikon NIS-Elements for Advanced Research software to capture and measure all cilia 

length in 3D. This software package included pre-programmed length analysis through iterations 

of automatic object recognition followed by image scanning and segmentation, optical flow and 

3D object reconstruction. The single-particle tracking was activated only when cilia length was 

less than 1 μm, especially in Tg737 cells. In such cases (wild-type and Tg737 cells), cells with 

less than 1 μm length of cilia were denoted as non-ciliated cells. 

Length measurements of 150 primary cilia was randomly selected using NIS-Elements. To 

obtain number of cells possessing cilia, six random 100× fields were scanned and a maximum 

intensity projection created for each field. The total number of cilia and nuclei, as a 

representation of cell number, was used to calculate ciliated cell percentage. Statistical analysis 

was performed on Prism GraphPad 8.1.2 software (GraphPad, San Diego, CA, USA). 

 

2.7. Scanning Electron Microscopy 

Cells were fixed with 2.5% paraformaldehyde/glutaraldehyde in sodium cacodylate buffer for 1 

h at 27 °C. Samples were post-fixed with 1% aqueous osmium tetroxide solution. Dehydration 

was done using ethanol solutions. Samples were further dried with a 2-h incubation in 50% 

hexamethyldisilazane (HMDS)-ethyl alcohol mixture, followed by two 30-min incubations in 

100% HMDS. Micrographs were obtained and analyzed using a Hitachi HD-2300 scanning 

electron microscope (SEM) [24]. 

 

2.8. Data Analysis 

The rate of pHi changes is denoted as a rate constant of ΔpHi and expressed as dpH/dt (ΔpHi 

units/min). Because the ΔpHi is defined as rate constant of pHi decreased with respect to time, 

this pHi was not necessarily decreased at a constant speed. In other words, the changes in pHi 

could speed up and slow down during the period of measurement. We, therefore, looked at a 

second order kinetics of these acceleration and deceleration events. The second order kinetics 

were determined through the tangential rates in the changes of rate constant of ΔpHi using 

Microsoft Excel software (version 15.32). The mathematical expression to calculate the change 

of function  at the time is as follows: 
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All the data shown are mean ± SEM from at least three independent experiments. Data was 

analyzed using ANOVA test followed by Tukey post-hoc test for multiple groups with p < 0.05 

being considered as significant. Analysis of data was performed with Prism GraphPad 7 

software. 

 

3. Results 

3.1. Intracellular Acidosis in Response to Decreasing pHo in Wild-Type and Tg737 Cells 

Incubation of cells in PSS of decreasing extracellular pH (pHo) from 7.4 to 5.5 acidified the 

intracellular environment in both wild-type (Figure 10a) and cilia-less Tg737 cells (Figure 10b). 

The acidic pHo mediated decrease in pHi was similar in both wild-type and Tg737 cells (Figure 

10c). The rate of pHi changes (ΔpHi) was not significantly different between wild-type and 

Tg737 cells (Figure 10d). The negative values of ΔpHi indicated that the pHi was decreased in 

acidified media. There was no significant different between wild-type and Tg737 cells in the 

uniformity of or changes in ΔpHi (ΔΔpHi; Figure 10e). The positive values of ΔΔpHi indicated 

that the ΔpHi was predominantly involved in acceleration to decrease pHi. 
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Figure 10. Decreased intracellular pH in response to acidic extracellular pH in wild-type and 
Tg737 cells. (a,b) Representative tracings of changes in intracellular pHi when wild-type and 
Tg737 cells are exposed to media of decreasing extracellular pH (pHo) from 7.4 to 5.5. (c) As the 
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pHo is decreased, both cell lines show a similar decrease in their pHi. (d) The rate constant pHi 
changes (ΔpHi) in response step changes in pHo are also similar in both cell lines. A negative 
value indicates a decrease in pHi. (e) Changes in ΔpHi (ΔΔpHi) are normalized to identify 
variability within ΔpHi in response to step changes in pHo. No variation is observed if there is no 
acceleration or deceleration (first order kinetic or ΔΔpHi = 0). Highest variation (ΔΔpHi = 100) 
indicates that an alternate acceleration-deceleration pattern occurred (if acceleration = 
deceleration, then ΔpHi = 0). 

 

To validate that primary cilia remained intact and structurally stable in acidified media, 

endothelial cilia were examined with ciliary marker acetylated-α-tubulin (Figure 11a). To 

examine the effect of extracellular pH on the length of primary cilia, the distribution of cilia 

length as well as ciliation frequency is tabulated in the bar graph (Figure 11b). Compared to 

control at pH 7.4, a small but significant increase in cilia length was observed at pHo of 7.0, 6.5 

and 5.5 while there were no significant differences observed in ciliation frequency (Figure 11c). 

There were no apparent differences in the cilia formation at different extracellular pH levels. 

Approximately 80–85% of wild-type cells were ciliated in acidified media, as well as at pH 7.4. 

For cilia-less Tg737 cells, the only representative image at pH 7.4 is shown with no further 

apparent differences in acidified media. There were no cilia length increase in Tg737 cells at 

various pHi. 

Most importantly, the data shows that wild-type cells continued to possess primary cilia without 

any structural aberrations in an acidic environment. Further validation with another ciliated cell 

line, NIH3T3, was conducted to observe changes in ciliary length or ciliation frequency when 

challenged with acidified media (Figure 12–14). Lower acidic media was able to significantly 

increase ciliary length at pHo of 6.5 and 5.5 while ciliation frequency remained unchanged at 

lower pHo. Among the many signaling activities related to the primary cilia, Hedgehog signaling 

(Hh) is unique in translocating activated receptors and proteins to the cilia [32]. To observe 

changes in functional role of the primary cilia under our experimental conditions, we used 

purmophamine to activate the Hh pathway. After observing no effect of Hh activation on ciliary 

length or ciliation frequency of the cells, we studied if acidified media induced Hh signaling, as 

shown by Gli translocation to the ciliary tip in NIH3T3 cells (Figure 14). There is also no 

apparent structural defect in cilia following a decrease in intracellular pH (Figure 15). 
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Figure 11. Immunofluorescence staining to study effects of pHo on primary cilia. (a) Cells (wild-
type and Tg737) were stained with ciliary marker (acetylated-α-tubulin; green) and nucleus 
marker (DAPI; blue). Representative images are shown for wild-type cells at different pHo and 
Tg737 at pHo 7.4. White boxes show enlargement of the images to depict the presence of 
primary cilia. (b) The lengths of primary cilia from 50 cells were measured from each 
preparation (N = 3) and illustrated in the bar graph to depict length distribution within each pHo. 
(c) Cilia length was averaged from 150 cells (N = 3; each with 50 randomly selected cells) and 
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the number of cells possessing cilia represented as a percentage with each point representing a 
individual experimental data. * indicates a significant difference to control pHo 7.4. 

 
 

Figure 12. NIH3T3 were stained with ciliary marker (acetylated-α-tubulin; green), Gli (red) and 
nucleus marker (DAPI; blue).  



www.manaraa.com

 

62 
 

 

Figure 13. The lengths of primary cilia from 150 NIH3T3 cells were measured from each 
preparation (N = 3; each 50 randomly selected cilia).  
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3.2. MAPK Activation in Response to Decreasing pHo in Wild-Type and Tg737 Cells 

Both wild-type and Tg737 cells exhibited MAPK phosphorylation in response to decreased pHo. 

Significant increase of ERK1/2 phosphorylation occurred at pHo 6.5 in wild-type cells (178% 

increase versus control pHo 7.4) and persisted at pHo 6.0 and pHo 5.5 (227% and 189% increase 

in ERK1/2 phosphorylation, respectively versus control pHo 7.4) (Figure 16a). ERK1/2 

phosphorylation occurred at pHo 6.0 in Tg737 cells (140% increase versus control pHo 7.4) 

(Figure 16b). Another MAPK, p38 was phosphorylated at pHo 7.0 in wild-type cells (242% 

increase versus control pHo 7.4) and persisted at pHo 6.0 and pHo 5.5 (227% and 189% increase 

in p38 phosphorylation, respectively versus control pHo 7.4) (Figure 17a). p38 phosphorylation 

occurred at pHo 6.5 in Tg737 cells (393% increase versus control pHo 7.4) and persisted through 

pHo 5.5 (321% and 360% increase in p38 phosphorylation at pHo 6.0 and 5.5, respectively, 

versus control pHo 7.4) (Figure 17b). Tg737 cells required higher acidic conditions to increase 

MAPK phosphorylation than the wild-type cells. There did not seem to be a significant 

impairment in cilia-less Tg737 cells’ ability to sense and respond to decreased pHo, but we find a 

lower pH threshold for activation of MAPK in Tg737 compared to wild-type cells. 
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Figure 14. (a) Cilium length of NIH3T3 cells before and after Hh activation or different acidic 
pHo exposures was averaged. (b) The percentage of cells with cilia is shown. (c) The percentage 
of cells is shown with Gli localization to the cilia.  
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Figure 15. Electron micrographs of endothelial cells at pH 7.4 (top) and pH 5.5 (bottom).  
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Figure 16. Decreasing extracellular pH increases ERK1/2 phosphorylation in wild-type and 
Tg737 cells. (a) Representative immunoblots show ERK1/2 phosphorylation in wild-type and 
Tg737 cells as they are exposed to media of decreasing extracellular pH (pHo) from 7.4 to 5.5 for 
5 minutes. (b) Bar graph shows the mean p-ERK/ERK, where wild-type cells phosphorylate 
ERK1/2 at pH of 6.5 while the same level of phosphorylation occurs at a lower pH of 6.0. * 
denotes p < 0.05 as compared to control pHo 7.4; N = 10 for wild-type cells and N = 10 for 
Tg737 cells. 
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Figure 17. p38 phosphorylation by decreased extracellular pH in wild-type and Tg737 cells. (a) 
Representative immunoblots show p38 phosphorylation in wild-type and Tg737 cells as they are 
exposed to media of decreasing extracellular pH (pHo) from 7.4 to 5.5 for 5 minutes. (b) Bar 
graph shows mean p-p38/p38. Significant increase in p-38 phosphorylation occurs when pH 
changes from 74. to 7.0. But in Tg737 cells the pH had to drop to 6.5 before significant changes 
in p38 phosphorylation was observed. * = p < 0.05 as compared to control pHo 7.4; N = 8 for 
wild-type cells and N = 8 for Tg737 cells. 

 

3.3. NH4Cl Pre-Pulse Induces Intracellular Acidosis in Wild-Type and Tg737 Cells 

To eliminate the effect of pHo and observe intracellularly restricted pH acidosis NH4Cl pre-pulse 

was used to lower pHi. Changes in pHi during the NH4Cl pre-pulse using Na+- and K+-containing 

PSS for pHi recovery are depicted in representative tracings (Figure 18a and 13b of wild-type 

and Tg737 cells, respectively) and data is summarized in Figure 18c. In wild-type cells, NH4Cl 

caused an increase in intracellular pH (0.014 ± 0.002 pH units/min); in Tg737 cells, NH4Cl also 

increased the pHi (0.019 ± 0.003 pH units/min). In the absence of sodium and potassium, the pHi 

decreased in both cell types (0.028 ± 0.004 pH units/min in wild-type cells and 0.020 ± 0.003 pH 

units/min in Tg737 cells, from NH4Cl conditions). pHi recovery occurred upon addition of the 

Na+- and K+-containing PSS solution, at a rate of 0.006 ± 0.0001 pH units/min in wild-type cells, 

and more significantly in Tg737 cells at a rate of 0.031 ± 0.003 pH units/min, from 0K+/0Na+ 

conditions. Because rates did not increase during incubation in the 0K+/0Na+ solution, Na+- or 
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K+-dependent transport is likely responsible for endothelial cells’ recovery from decreased pHi. 

Another inference is that Na+- and K+-independent transport may not be present or activated by 

intracellular acidosis, in vascular endothelial cells. 

 

 

Figure 18. Changes in pHi during the NH4Cl pre-pulse in wild-type and Tg737 cells. (a,b) 
Representative tracings of changes in intracellular pH when wild-type and Tg737 cells are 
exposed to solutions of the NH4Cl pre-pulse in Na+- and K+-devoid solution for pHi recovery. (c) 
Bar graph shows the summary of mean changes in pHi recovery in wild-type and Tg737 cells. 
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To validate that primary cilia remained intact and structurally stable after intracellular 

acidification independent of pHo, endothelial cilia were examined with ciliary marker acetylated-

α-tubulin (Figure 19). To examine the effect of pHi acidification on the length of primary cilia, 

the distribution of cilia length as well as ciliation frequency is tabulated in the bar graph (Figure 

20). Compared to control at pHi 7.4, a small but significant decrease in cilia length was observed 

at pHi of 7.0 while there were no significant differences observed in ciliation frequency. There 

were no apparent differences in the cilia formation between pHi 7.4 and 7.0. Approximately 80–

85% of wild-type cells were ciliated. There were no cilia length recovery in Tg737 cells at pHi of 

7.0. 

 

 

Figure 19. Endothelial cells were stained with ciliary marker (acetylated-α-tubulin; green) and 
nucleus marker (DAPI; blue).  
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Figure 20. The lengths of primary cilia from 150 endothelial cells were measured from each 
preparation before and after NH4Cl pre-pulse in 0 Na+/K+ solution (N = 3; each 50 randomly 
selected cilia). 

 

 

 



www.manaraa.com

 

71 
 

3.4. Intracellular Acidosis Activates MAPK Signaling Pathways 

MAPK phosphorylation during the NH4Cl pre-pulse was similar in both cell types, with slight 

variations (Figure 21a). ERK1/2 phosphorylation at acid pHi during the 0K+/0Na+ step of the 

NH4Cl pre-pulse occurred in only wild-type cells (3.7-fold increase in ERK1/2 phosphorylation 

versus control conditions) (Figure 21b). ERK1/2 phosphorylation was observed during pHi 

recovery in both wild-type and Tg737 cells (2.1-fold and 2.3-fold respective increases in 

phosphorylation versus control conditions). p38 phosphorylation pattern varied between the wild 

type and cilia-less Tg737 as well. In wild-type cells, p38 phosphorylation occurred at low pHi 

during the 0K+/0Na+ step of the NH4Cl pre-pulse (10-fold increase in phosphorylation versus 

control conditions); in Tg737 cells, p38 phosphorylation was dampened, occurring only during 

pHi recovery (4.0-fold increase in p38 phosphorylation versus control conditions) (Figure 21c).  

 

3.5. Effects of K+ on pHi Recovery and on MAPK Phosphorylation during the NH4Cl Pre-Pulse 

in Wild-Type and Tg737 Cells 

Potassium-containing 5K+/0Na+ solution could be used to study K+-dependent pHi recovery [1]. 

When the NH4Cl pre-pulse was expanded to include potassium-containing 5K+/0Na+ solution in 

between the 0K+/0Na+ and PSS solutions during pHi recovery, the pHi increased very rapidly in 

wild-type cells and Tg737 cells, highlighting the importance of K+-dependent transporter activity 

during pHi recovery in vascular endothelial cells, shown in representative tracings in Figure 22a 

and 22b, and summarized in Figure 22c. Addition of potassium-containing 5K+/0Na+ solution 

drove the pHi up in both cell types (0.030 ± 0.003 pH units/min in wild-type cells and 0.035 ± 

0.003 pH units in Tg737 cells, versus 0K+/0Na+ conditions). Interestingly, addition of PSS at the 

end of the pulse returned the pHi to a normal level by driving the pHi down at a rate of 0.036 ± 

0.005 pH units/min in wild-type cells and 0.035 ± 0.006 pH units/min in Tg737 cells, from 

5K+/0Na+ conditions. 
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Figure 21. ERK1/2 and p38 phosphorylation during the NH4Cl pre-pulse in wild-type and Tg737 
cells. (a) Representative immunoblots show ERK1/2 and p38 phosphorylation in wild-type and 
Tg737 cells as they are exposed to different solutions during the NH4Cl pre-pulse. (b,c) Bar 
graphs show mean p-ERK/ERK and p-p38/p38. * indicates p < 0.05 as compared to control 
conditions; for ERK1/2 N = 6 for wild-type cells and N = 5 for Tg737 cells; for p38 N = 5 for 
wild-type cells and N = 5 for Tg737 cells. 
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Figure 22. Changes in pHi during the NH4Cl pre-pulse in wild-type and Tg737 cells. (a,b) 
Representative tracings of changes in intracellular pH when wild-type and Tg737 cells are 
exposed to solutions of the NH4Cl pre-pulse including the 5 mM K+ solution during pHi recovery 
of wild-type and Tg737 cells. (c) Bar graph shows the summary of pHi recovery data from pre-
pulse tracings in wild-type and Tg737 cells. 

 

Addition of potassium-containing 5K+/0Na+ solution during pHi recovery also influenced MAPK 

phosphorylation, more specifically p38 phosphorylation (Figure 23). In wild-type cells, p38 

phosphorylation coincided with ERK1/2 phosphorylation at acidified pHi, during the 0K+/0Na+ 
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step of the NH4Cl pre-pulse (10-fold increase in phosphorylation versus control conditions), and 

p38 phosphorylation persisted through pHi recovery using the 5K+/0Na+ solution (5.5-fold 

increase in phosphorylation versus control conditions). In Tg737 cells, p38 phosphorylation 

occurred later during pHi recovery with the PSS solution (4.0-fold increase in phosphorylation 

versus control conditions). Both ERK1/2 and p38 phosphorylation were absent in Tg737 cells as 

compared to wild-type cells, where significant increases in MAPK phosphorylation occurred 

after inducing intracellular acidosis. 
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Figure 23. Effect of K+ on ERK1/2 and p38 phosphorylation during the NH4Cl pre-pulse in wild-
type and Tg737 cells. (a) Representative immunoblots show ERK1/2 and p38 phosphorylation in 
wild-type and Tg737 cells as they are exposed to different solutions during the NH4Cl pre-pulse. 
(b,c) Bar graphs show mean p-ERK/ERK and p-p38/p38, respectively. * denotes p < 0.05 as 
compared to control conditions. For ERK1/2, N = 8 for wild-type cells and N = 8 for Tg737 
cells; for p38, N = 7 for wild-type cells and N = 5 for Tg737 cells. 

 

4. Discussion 

In the present studies, we assessed the role of primary cilia in pH sensing of vascular endothelial 

cells. We compared intracellular responses in wild-type and cilia-less Tg737 mutant cells against 

extracellular pH changes and obtained three main results. First, intracellular pH homeostasis was 

not significantly different between the wild-type and Tg737 cells. Second, phosphorylation of 

two mitogen-activated kinases, p38 and ERK1/2, were increased by lowering extracellular pH in 

both the wild-type and the Tg737 cells, but for Tg737 cells the same extent of phosphorylation 

needed a stronger acidic condition. Third, when the cells were exposed to 0K+/0Na+ and 

5K+/0Na+ solutions after the NH4Cl solution, the phosphorylation of p38 and ERK1/2 was 

enhanced only in the wild-type cells.  

 

Wild-type and Tg737 cells have similar responses to decreased extracellular pH (pHo), including 

decreased intracellular pH (pHi) relative to drops in pHo and acute ERK1/2 and p38 

phosphorylation at pHo < 6.0. Diminished MAPK phosphorylation was observed in Tg737 cells 

compared to wild-type cells at certain pHo. A significant finding from these experiments was that 

MAPK phosphorylation in vascular endothelial cells when exposed to low pHo may be 

associated to the cilia or there could be inherited machinery differences between wild-type and 

Tg737 cells in terms of ERK1/2 and p38 phosphorylation. 

 

An acidic environment increased the length of primary cilia in wild-type cells, whereas isolated 

acidification of intracellular pH decreased cilia length. The Tg737 cells remained cilia-less under 

all conditions. Similar to endothelial cells, the NIH3T3 fibroblast cells also presented with longer 

cilia when challenged with an acidic environment. The physiological significance of this cilia 

length changes is not clear at present. However, it has been speculated that cilia length could be 

used as a cellular marker in response to injury or environmental insults [33–35]. SEM 
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micrographs showed no structural defects in the cilia after exposure to acidified media. With the 

aim of finding any functional effects of acidified media in the cilium, we looked at possible 

acidic pHo induced Hh signaling but found no unexpected activation of Hh. 

 

The next set of experiments were designed to bypass extracellular pH sensing by lowering 

intracellular pH only. In terms of pHi acidification, NH4Cl pre-pulse procedure lowered control 

and Tg737 cell pHi in the same manner. Tg737 cells showed no ERK1/2 or p38 phosphorylation 

in response to decreased intracellular pH, compared to wild-type cells, consistent with a lower 

pH requirement as seen in pHo induced intracellular acidification. Phosphorylation of p38 during 

K+-mediated pHi recovery is absent in Tg737 cells but this does not produce any differences in 

pHi recovery pattern in comparison to wild-type cells. From our findings we conclude that 

endothelial cilia are unlikely to serve as the only acid sensing organelle but may be involved in 

buffering capacity of cytosolic pH in vascular endothelial cells. The significance in this could 

mean that ciliopathy (abnormal cilia) may have very little direct role in the physiological acid-

base imbalance. 

 

Acid-induced MAPK activation has been observed in the renal epithelial cells [36]. Our studies 

show that acid activation of MAPK, p38, is relevant in endothelial cells and may be involved in 

the regulation of acid-mediated transport. Consistent with our observation, Flacke et al. showed 

that Wistar rat coronary endothelial cells exposed to acidosis (pH 6.4) led to a transient 

activation of p38 and Akt kinases, which are essential for protection against apoptosis [37]. 

The importance of K+ channels in pHi recovery in vascular endothelial cells has been highlighted 

in this study, with profound increases in intracellular pH upon addition of K+-containing solution 

following intracellular acidosis. Our data on K+-dependent pHi recovery indicates that K+-

transporters are primarily activated by low pHi, which could include K+-channels, Na+/K+ 

pumps, and/or Na+/K+/2Cl− cotransporters. Studies have shown that ATP-sensitive K+ channels 

are activated directly by intracellular but not by extracellular acidosis. This has been established 

in rat basilar artery where pHi-acidification mediated dilation was blocked by glibenclamide, an 

inhibitor of ATP-sensitive potassium channels [38]. Future studies will be needed to determine 

the precise potassium channel, pump, or transporter responsible for K+-dependent pHi recovery 

in vascular endothelial cells. 
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A single, universal pH/acid sensor in the cardiovascular and renal systems that regulates MAPK 

pathways and ion transport has yet to be identified, but there are several possible candidates. 

These putative pH sensors expressed by vascular endothelial cells will lie upstream of acid-

activated ERK1/2 and p38, and may include epidermal growth factor receptor (EGFR) [4], an 

acid-sensing ion channel (ASIC) [39], or a G-protein coupled receptor. The GPCR GPR4 is 

known to be acid-activated [40,41] and regulates potassium-driven transport to maintain pH [42]. 

GPR4-null mice have minor defects in renal acid excretion and mild metabolic acidosis. GPR4 

deficiency also affects the quality of small blood vessels during angiogenesis [43]. In vascular 

endothelial cells, acidosis activation of GPR4 stimulates inflammatory responses [43]. With p38 

being the notorious inflammatory MAPK [3] and its activation being clear in response to acid 

pH, GPR4 would be a promising pH sensor in vascular endothelial cells in the regulation of p38-

mediated signaling pathways described here. 

 

Other good candidates for a pH sensor in vascular endothelial cells are acid-sensing ion channels 

(ASICs), which are ligand-gated and amiloride-sensitive cation channels activated by 

extracellular H+ [44]. ASICs are members of the degenerin/epithelial sodium channel 

(DEG/ENaC) superfamily and contain an acidic pocket responsible for acid-dependent gating of 

sodium and calcium, albeit to a lesser degree. ASICs are expressed in the central and peripheral 

nervous system, including afferent tissues such as skin, cardiovascular system, muscle, joint, 

teeth, vestibular, and visceral cells [45]. 

 

With the primary cilium being established as a sensor of different mechanical and biochemical 

cues, we test whether the primary cilium has a role in sensing and transducing pH changes. We 

compare acidosis response using vascular endothelial cells as an in vitro model compared to 

cilia-less Tg737 cells. Our study on non-motile primary cilia may not be extrapolated to the 

motile cilia in developing nodes or in the brain ventricles. Nonetheless, our data shows that acid-

activation of p38- and ERK1/2-mediated signaling pathways regulate ion transport to maintain 

acid-base homeostasis in endothelia. We showed that pHi recovery after an NH4Cl pre-pulse in 

vascular endothelial cells is predominantly a K+-dependent process. We also observed that a 

more acidic pHo was needed to induce MAPK phosphorylation in cilia-less Tg737 cells 
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compared to wild-type cell. NH4Cl pre-pulse is a technique used to create pHo-independent pHi 

acidification, in this scenario pHi recovery was seen to be delayed in Tg737 cells. Therefore, we 

conclude that the primary cilium, a known cardiovascular mechanosensor [23,46,47] and 

chemoreceptor [24,48,49] is not the sole sensor for acid sensation but does influence the pH 

threshold for MAPK kinase phosphorylation. Future studies to examine the identity of the acid 

sensors distributed in the cilia might be able to detail the nuanced role of primary cilia or Tg737 

deletion that might affect the buffering capacity of the Tg737 mice model. 
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Chapter 5. Sensory primary cilium is a responsive cAMP microdomain in renal epithelia.* 

 

Abstract 

 

Primary cilia are hair-like cellular extensions that sense microenvironmental signals surrounding 

cells.  The role of adenylyl cyclases in ciliary function has been of interest because the product of 

adenylyl cyclase activity, cAMP, is relevant to cilia-related diseases.  In the present study, we 

show that vasopressin receptor type-2 (V2R) is localized to cilia in kidney epithelial cells.  

Pharmacologic inhibition of V2R with tolvaptan increases ciliary length and mechanosensory 

function.  Genetic knockdown of V2R, however, does not have any effect on ciliary length, 

although effect of tolvaptan on ciliary length is dampened.  Our study reveals that tolvaptan may 

have a cilia-specific effect independent of V2R or verapamil-sensitive calcium channels.  Live-

imaging of single cilia shows that V2R activation increases cilioplasmic and cytoplasmic cAMP 

levels, whereas tolvaptan mediates cAMP changes only in a cilia-specific manner.  Furthermore, 

fluid-shear stress decreases cilioplasmic, but not cytoplasmic cAMP levels.  Our data indicate 

that cilioplasmic and cytoplasmic cAMP levels are differentially modulated.  We propose that 

the cilium is a critical sensor acting as a responsive cAMP microcompartment during 

physiologically relevant stimuli.  

 
* Sherpa RT, Mohieldin AM, Pala R, Wachten D, Ostrom RS, Nauli SM. Sensory primary cilium 
is a responsive cAMP microdomain in renal epithelia. Sci Rep. 2019 Dec 25;9(1):6523.  
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Introduction 

The cilium is a dynamic structure that acts as a mechanosensory appendage of the cell and is 

involved in the pathogenesis of polycystic kidney disease (PKD)1–4.  The hair-like cilium extends 

from epithelial lining cells into the lumen and bends upon fluid shear stress, triggering an influx 

of calcium3–7.  It has previously been shown that the functional efficiency of the cilia depends on 

the length; i.e., longer cilia can detect a lower magnitude of shear stress and elicit a larger 

increase in calcium influx8–10.  Structural defects of the cilium, such as in intra-flagellar transport 

protein 88 (IFT88) deletion resulting in shortened cilia, cause ciliopathy phenotype in PKD 

mouse models1.  Likewise, functional defects of the cilium, such as dysfunctional polycystins 

proteins (PC1 or PC2), cause polycystic kidneys2–4,11,12.  Both PC1 and PC2 form a 

mechanosensory complex in the cilium, which upon bending modulates calcium fluxes13,14. 

 

Similar to calcium, cyclic adenosine monophosphate (cAMP) is a second messenger involved in 

different signaling pathways.  Studies have shown that increasing cAMP levels in cystic 

epithelial cells, via either adenylyl cyclase (AC) activation or addition of membrane-permeable 

cAMP analogs, enhances cyst formation and/or cyst enlargement.  The cAMP-mediated 

cystogenic effect has been observed in in vitro cultures obtained from murine models and intact 

cysts excised from PKD patients15–17.  Arginine vasopressin (AVP), the endogenous antidiuretic 

hormone, is also observed to aggravate the cystic phenotype as it raises cAMP levels by 

vasopressin activating receptor type 2 (V2R), a G protein-coupled receptor (GPCR).  Activation 

of V2R induces an intracellular cAMP increase, leading to the insertion of aquaporin 2 (AQP2) 

into the apical membrane and regulation of body fluid homeostasis18,19.  Strategies focusing on 

blocking vasopressin action have shown reduced cystogenesis in murine models of PKD20–25.  

Polycystic Kidney (PCK) rats develop progressive cystic enlargement of the kidneys and hepatic 

histologic abnormalities that resemble human autosomal dominant PKD26.  Using this model, 

Wang et. al. evaluated renal cyst development in the PCK rats without circulating vasopressin.  

PCK rats were crossed with Brattleboro (AVP-/-) rats and in the resulting PCK AVP-/- rats, renal 

cAMP levels were lowered along with a marked reduction in renal cysts23,27.  The promising 

results of preclinical  data have spurred interest in pursuing V2R antagonists as a prospective 

treatment for PKD23–25.  Clinical trials have shown that tolvaptan, a V2R antagonist, is effective 

in decreasing cyst growth and in slowing the decline of renal function28–32   
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Cyclic AMP is a ubiquitous second messenger, produced by AC activation upon binding of 

ligands to GPCR coupled to Gs.  Thus, cAMP regulates a wide range of cellular processes, 

ranging from gene regulation to immune function33.  Previous studies have demonstrated that 

increasing intracellular cAMP levels, through the addition of forskolin or a cell-permeable 

cAMP analog, causes an increase in ciliary length of renal epithelia34,35.  Consistent with this 

finding, forskolin or a cell-permeable cAMP analog also increases ciliary length in vascular 

endothelia36.  Interestingly, forskolin or a cell-permeable cAMP has a minimal effect in serum-

deprived synoviocytes37.  Furthermore, inhibition of ciliary-localized adenylyl cyclase 3 (AC3) 

induces primary cilia elongation in synoviocytes37.  However, the effect of tolvaptan in 

modulating ciliary length through cAMP has never been evaluated. Moreover, the dynamic level 

of cilioplasmic and cytoplasmic cAMP has not been previously examined with a targeted sensor.  

Given the potential treatment of tolvaptan and the role of cilia in PKD, we sought to characterize 

the effect of tolvaptan on ciliary length and ciliary cAMP signaling.  

 

We show that tolvaptan increases ciliary length and enhances mechanosensitivity in response to 

shear stress.  We also show that V2R and AC3 are localized in renal epithelial cilia.  Monitoring 

cAMP levels in the cilioplasm after stimulation with tolvaptan revealed that the cilium is a 

distinct cAMP microdomain. Changes in cilioplasmic cAMP levels were found to be distinct and 

independent from cytoplasmic level of cAMP.  Furthermore, shear stress decreased cilioplasmic, 

but not cytoplasmic cAMP below basal levels.  We therefore hypothesize that primary cilia are 

chemosensitive and mechanosensitive organelles that form dynamic cAMP microdomain distinct 

from cell body. 

 

Materials and Methods:   

1.  Reagents and antibodies 

For cell culture, Dulbecco's Modified Eagle Medium (DMEM), trypsin, penicillin-streptomycin 

solution, phosphate buffered saline (PBS), Dulbecco's Phosphate-Buffered Saline (DPBS) and 

were acquired from Corning (Manassas, VA).  Fetal bovine serum (FBS) was obtained from 

Seradigm and Dulbecco's phosphate buffered saline (DPBS) from HyClone (Logan, UT).  Sucrose, 
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Triton-X and Adenosine 5'-triphosphate Disodium (ATP) Salt were purchased from Fisher 

Scientific (Fair Lawn, NJ) and paraformaldehyde (PFA) from Electron Microscopy Services 

(Hatfield, PA).  Propidium iodide (PI) from obtained from Biotium (Fremont, CA), forskolin from 

BioVision (Milpitas, CA), verapamil (Ver) from Sigma-Aldrich (Milwaukee, WI), tolvaptan (Tvp) 

from AK Scientific (Union City, CA) and arginine vasopressin (AVP) was purchased from Bachem 

(Torrance, CA). Laemmli 2X sample buffer was obtained from BioRad (Hercules, CA), cOmplete 

Protease Inhibitor Cocktail from Roche (St. Louis, MO) and Western blot visualization kit was 

obtained from Thermo Scientific (Rockford, IL).  Nonfat dry milk was purchased from 

LabScientific (Livingston, NJ).  Primary antibodies, acetylated-a-tubulin was acquired from 

Abcam (Cambridge, MA), b-actin from Cell Biolabs (San Diego, CA) and V2R antibody from 

EMD Millipore (Billerca, MA).  Previously validated adenylyl cyclase 2, 3, 4, 5/6, 7, 8 and 9 

antibodies were obtained from Santa Cruz Biotech (Santa Cruz, CA)80.  The secondary antibodies, 

fluorescein anti-mouse, texas-red anti-rabbit and mounting media with DAPI were purchased from 

Vector Laboratories (Burlingame, CA).  

 

2.  Cell culture 

Porcine renal epithelial cells from proximal tubule (LL-CPK1), dog epithelial cells from inner 

medullary collecting duct (IMCD), and mouse vascular endothelial (ET) cells were cultured to a 

confluent monolayer in DMEM supplemented with 10% FBS at 37◦C in 5% CO2.  In some 

experiments, LL-CPK1 cells were also grown on Corning Transwell permeable supports to induce 

polarization for receptor localization studies and allow antibody access to the basal membrane. ET 

and LL-CPK1 cells have been previously described in detail5,81.  Once differentiated, different 

concentrations of tolvaptan or vasopressin was added to culture plates.  Concentration for tolvaptan 

was determined to be 0.1 μM based on the optimal ciliary length increase based on dose-response 

studies, whereas a vasopressin concentration of 10 μM was selected because it maximally increases  

cAMP levels82.  Verapamil was added to cells at a final concentration of 2 μM for 10 minutes 

before drug treatment83. The drugs were mixed in starvation medium (DMEM with 2% FBS) and 

cells were incubated for another 20 hours.  Vehicle alone (PBS containing 0.0005% DMSO) was 

used as a control groups to account for the DMSO concentration in both tolvaptan and vasopressin 

working solutions. 
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3.  FACS analysis 

Florescent-activated cell sorting (FACS) was used to investigate a possibility of an effect on cell 

division by tolvaptan (0.1 μM).  Cells were harvested with and without drug treatment.  Cells were 

then fixed using 70% ethanol and incubated with propidium iodide (PI), a DNA-intercalating 

fluorescent molecule, for 30 minutes at 37◦C.  Cell division analysis was carried out with flow 

cytometry BDFacsverse with BD FACsuite software. 

 

4.  Immunofluorescent staining 

Cells were fixed for 10 minutes (4% PFA/2% sucrose in PBS) and permeabilized for 5 minutes 

(10% Triton X-100).  Acetylated α-tubulin (1:10,000 dilution in PBS) and fluorescein 

isothiocyanate (FITC)-conjugated secondary (1:1000 dilution in PBS) antibodies were each 

incubated with the cells for 1 hour at 37◦C.  For V2R visualization, V2R antibody (1:10,000 

dilution in PBS) and texas-red conjugated anti-rabbit antibody were applied for 1 hour each at 

37◦C.  All adenylyl cyclase (AC) antibodies were used at a 1:1,000 dilution, and incubated with 

appropriate texas-red conjugated secondary antibody for 1 hour each at 37◦C.  Slides were then 

mounted with dapi hard set mounting media (VectorLabs, Burlingame, CA).  Nikon Eclipse Ti-E 

inverted microscope or Nikon Confocal microscope with NIS-Elements imaging software (version 

4.30) was used to capture images of primary cilia.  Automated image acquisition was conducted 

in large image scan mode at 100× magnification and Z-stacks of 0.1 µm thickness. All images are 

shown as maximum intensity projections except confocal generated images or stated otherwise.  

 

5.  Flow-induced cytosolic calcium imaging 

Cells were grown on glass-bottom plates.  After treatment with the appropriate drug, the cells were 

incubated with 5 µM Fura-2 AM (TEFLabs, Austin, TX) at 37◦C for 30 minutes.  After washing 

with DPBS, the cells were observed under a 40× objective lens with a Nikon Eclipse Ti-E 

microscope.  Fura-2 fluorescence images at excitation of 340/380 nm and emission of 510 nm 

were recorded.  After equilibration under the microscope for 20 minutes, baseline calcium was 

recorded for 2 minutes and experimental data were acquired.  Fluid-shear stress was then applied 

to cells with an Instech P720 peristaltic pump.  The perfused fluid was pumped into the cell culture 

dish and retained at a shear stress of 1 dyne/cm2 (for epithelial cells) or 8 dyne/cm2 (for endothelial 

cells) with a constant flow rate of about 20 or 160 μl/sec, respectively.  At the end of each 
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experiment, the maximum calcium signal was obtained by perfusion of ATP (10 µM) to confirm 

cell viability.  In addition to autofluorescence, both minimum and maximum fluorescence was 

collected as previously described84.  Conditions for all experiments were maintained at 37◦C and 

5% CO2 in a stage top cage incubator (okoLab, Burlingame, CA).  Calcium analysis was then 

followed a standard calculation as previously described84. 

 

6.  Generation of V2R-knockdown in renal epithelial LL-CPK1 cells  

Arginine vasopressin receptor type-2 (AVPR2 or V2R) targeting shRNA construct (5’-ATC GCC 

TTG ATG GTG TTT GTG GCA CCT GC-3’: pAVP2Ra-C-shLenti) in a lentivirus backbone 

vector (TL513450) was ordered from Origene. Viral particles were generated in HEK cells using 

shRNA lentiviral packaging kit (TR30022) and passed through a 0.45-micron filter to remove cell 

debris.  For transduction, epithelial cells were incubated with the collected viral particles and 

Polybrene (8 ug/ml; EMD Millipore). 

 

For Western blot, total cell lysate was analyzed by SDS-PAGE on a 10% SDS-polyacrylamide gel.  

After separation, a semi-dry transfer was done using Bio-Rad system.  The anti-V2R (1:1000 

dilution) and anti-b-actin (1:500 dilution) antibodies were incubated with the PVDF 

(Polyvinylidene difluoride) membrane.  Each incubation was done at 4◦C overnight.  For 

visualization, horse radish peroxidase (HRP)-conjugated secondary antibodies anti-mouse (1:1000 

dilution) or anti-rabbit (1:1000 dilution) were used.  For dot blot experiment, cell or ciliary proteins 

were extracted in RIPA buffer with protease inhibitor.  A 3 µl of sample extract was spotted onto 

a nitrocellulose membrane.  After drying the membrane, it was blocked in 5% BSA (bovine serum 

albumin; Promega) for 1 hour.  Incubation with V2R antibody (1:1000 dilution) was done for 30 

minutes at room temperature.  The membrane was then incubated with an HRP conjugated anti-

rabbit antibody for 30 minutes at room temperature.  For both Western and dot blots, the membrane 

was incubated with ECL (Enhanced Chemiluminescent; Thermo Scientific) for 1 minute. 

Visualization of the protein signal was done in Bio-Rad Image analysis and imager. 

 

7.  Cilia isolation 

Cells were plated on 100 mm dishes (6 for each cell line) with 10% FBS supplemented DMEM at 

37◦C in 5% CO2.  Cells were grown for 7 days and were starved overnight for differentiation as 
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outlined above in cell culture methods.  Cells were rinsed gently with PBS for a brief period and 

10 ml of PBS was added.  The dish was then placed on a rotary shaker (ThermoFisher Scientific 

MaxQ 2508) and shaken for 4 minutes at 360 rpm, resulting in a shear stress of 10 dyn/cm2.  PBS 

was collected and transferred to a 50 ml centrifuge tube and spun for 10 minutes at 1,000 xg at 

4°C.  After discarding the pellet, the supernatant was spun down in an ultracentrifuge 

(ThermoFisher Scientific Sorvall WX 100+ Ultracentrifuge) with a fixed angle rotor 

(ThermoFisher Scientific, T-647.5) at 40,000 xg for 45 minutes at 4°C.  After discarding the 

supernatant, the remaining pellet containing primary cilia, was resuspended in either RIPA buffer 

or resuspension buffer as previously discussed43,44. 

 

8.  cAMP imaging and quantification 

Intracellular cyclic AMP (cAMP) was quantified using ELISA and live-cell imaging.  The cAMP 

ELISA Kit from Cayman Chemical (Cat. No. 581001) was used to measure total cAMP from cell 

population.  Samples were lysed according to manufactural instructions in a 96-well plate format. 

After primary incubation for 18 hours, the plate was developed and read at 415 nm on a 

spectrophotometer.  

For cAMP live-cell imaging, we tested both pc3.1-SSTR3-mICNBD-FRET and 5HT6-mCherry-

cADDis.  The generation of pc3.1-SSTR3-mICNBD-FRET and 5HT6-mCherry-cADDis have 

been previously described85,86.  While both constructs worked fine in response to forskolin, we 

chose to use 5HT6-mCherry-cADDis for the rest of our studies to obtain a relatively better 

transfection in our cell line.  Of note is that pc3.1-SSTR3-mICNBD-FRET was introduced to the 

cells with chemical transfection (jetPRIME; Polyplus), whereas Baculovirus transduction was 

utilized to express 5HT6-mCherry-cADDis (#D0211G; Montana Molecular).  2x105 cells were 

plated in 6 well plates and grown in conditions described above for 3 days. Baculovius mediated 

transduction was then performed using a final concentration of 5x105 VG (viral genes)/ml and 4 

mM sodium butyrate. 12 hours after initiation of viral transduction media was replaced with 

starvation media and incubated for another 16 hours before imaging. To enable us to monitor cilia 

and cell body concurrently, we used side-view imaging as previously described51.  After infection, 

baseline fluorescence was examined for each cell.  Those cells expressing the cAMP sensor in the 

cilia were used in our studies.  In addition to cilia specific cAMP sensor, a global cytosolic sensor 

(#U0200R; Montana Molecular) was also used to validate our imaging system. 
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Fluorescence readings were taken on individually for mCherry and cADDis (cAMP difference 

detector in situ) at excitation/emission wavelengths of 590/610 and 490/510 nm, respectively.  A 

set of mCherry and cADDis images were captured at 0.8 frames per second.  The mCherry signal 

was used to correct fluorescence artifact.  Because cADDis is a downward cAMP reporter with a 

constant mCherry fluorescence, the mCherry/cADDis ratio therefore depicted intracellular cAMP 

level and was used to quantify changes in cilioplasmic and cytoplasmic cAMP.  For ease of 

understanding, the cADDis signal was inverted to represent a direct relationship between cAMP 

level and cADDis intensity in our figures (1/cADDis).  Time-lapse recordings were acquired on 

NIS-Elements imaging software (version 4.30) and fluorescence intensities were measured for the 

duration of the experiment.  

 

9.  Data analysis 

All data are reported as a mean ± standard error of mean (s.e.m).  Statistical analysis was performed 

using ANOVA (analysis of variance) followed by Bonferroni post-hoc test or two way ANOVA 

when two factors were present followed by Sidak’s multiple comparison test.  Power analysis was 

determined from the coefficient variant.  When our coefficient variant was above 15%, the number 

of experimental and corresponding control groups was increased.  Because in all our studies both 

control and experimental groups were run in parallel, our control and experimental values 

represented matched number of observations.  In some cases, all experimental groups (including 

the corresponding controls) were analyzed with the post-hoc test.  In other cases, only selected 

pairs (control vs. experimental groups) were tested.  Most of our statistical analyses were 

performed with GraphPad Prism v.7 software.  In some cases, Microsoft Excel v.15.4 was used 

for regression analyses.  Linear regression was performed to obtain a standard calibration curve 

and linear equation.  In this case, the analysis was done with the ordinary least squares (OLS) 

regression of y on x.  A non-linear logarithmic regression was used to fit the sigmoidal trend-curve 

to show dose-response relationship.  Asterisks (*) denote statistically significant differences at 

various probability levels (P).  The P values of the significant differences are indicated in the figure 

legends. 
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When image analyses were done on fixed-specimen, images were taken at different focal planes 

(z-stack).  If needed, a 3-dimensional image was constructed from the XY planes to validate XZ 

and YZ field for completion of analysis or measurement.  Automated image acquisition with a 

thickness of 0.1 µm were taken with Nikon A1R Confocal microscope and NIS-Elements 

imaging software v.4.30.  This system was also used for image analyses (3D object 

reconstruction, image segmentation, etc.).  For live-imaging, Nikon Eclipse Ti-E inverted 

microscope and Nikon NIS Element for Advanced Research software were used for image 

acquisition and analyses.  Our live-imaging system with controlled environmental chamber 

allowed more flexibility for various excitation and emission spectra from a fast wavelength 

exchanger DG4/5 mirror reflection system.  Images were not enlarged during image analysis to 

avoid a false empty magnification.  Ciliary length measurements were done using the 

measurement tool in NIS-Elements imaging software on maximum intensity projections obtained 

from immunofluorescent images.  All representative images and video frames are presented with 

scale bars to indicate the actual image reduction size at 0.8 frames per seconds (fps). Before 

Fura-2 experiments, a brightfield image focused on cell borders was obtained. Using intensity 

thresholds, a binary layer was created and overlaid with the Fura-2 images to create our 

representative images.  

 

Free cytosolic calcium (Cyt Ca2+) concentrations were calculated with the formula [Cyt Ca2+= Kd 

× [(R - Rmin)/(Rmax - R)] × (Fmax/Fmin), where Kd denotes the apparent dissociation constant 

of the Fura-2 indicator (145 nM), R is a ratio of 510 nm emission intensity with excitation at 340 

and 380 nm, and Rmax and Rmin are fluorescence intensity ratios for the calcium-bound and 

calcium-unbound Fura-2 with excitation at 340 and 380, respectively.  We determined the Rmax 

and Rmin values to be stable and independent of cell type.  Fmax and Fmin were the fluorescence 

intensity values of Fura-2 with excitation at 380 nm under the same conditions.  The calcium level 

was radiometrically calculated. Rmin and Rmax values denote the minimum and maximum 

radiometric signal ratios, respectively.  At the end of each experiment, the minimum fluorescence 

(Rmin) was obtained by incubating the cells in calcium-free solution that contained 2 mM EGTA 

and 10 μM ionomycin at pH 8.6 to optimize the ionomycin effect.  After the minimum signal ratio 

was determined, the cells were incubated with excess calcium (10 mM) to obtain the maximum 

signal ratio (Rmax).  Signal intensities were collected from individual cells, as well as from the 



www.manaraa.com

 

91 
 

whole cell population/monolayer.  All the fluorescence measurements were corrected for 

autofluorescence.  Calcium analysis was then followed a standard calculation as previously 

described84. 
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Results  

Tolvaptan increases ciliary length and enhances shear-stress induced cytosolic calcium 

increase. 

 

Figure 24. Tolvaptan increases cilia length and enhances mechanosensitivity.  (a) Dose-response 
relationship between different concentrations of tolvaptan and ciliary length is shown in the 
Sigmoidal plot.  Distribution of ciliary length for individual tolvaptan concentration is shown in 
Figure 25.  (b) Representative immunostaining images of epithelial and endothelial cells treated 
without (control, vehicle) and with tolvaptan (0.1 µM) for 24 hours.  Cilia (acetylated-a-tubulin) 
are shown in green and nucleus in blue.  Corresponding bar graphs show ciliary length averages.  
(c) Time-lapse images represent the intracellular calcium level in response to fluid-shear stress 
(arrow) by epithelial and endothelial cells treated without (control, vehicle) and with tolvaptan 
(0.1 µM).  Color bar indicates intracellular calcium level from low (black) to high (red).  
Corresponding brightfield images are shown in Figure 25.  (d) Averaged intracellular calcium 
levels are plotted across time in second (s).  Arrows indicate the start of fluid-shear stress.  (e) 
Bar graph shows averaged intracellular calcium peak induced by fluid-shear.  N=3 experiments 
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for each group.  For each N, a minimum of 50 cells were analyzed.  * P<0.05, **P<0.001, and 
***P<0.0001 compared to the corresponding control groups. 

 

To determine if tolvaptan could alter the ciliary length, we measured the ciliary length 

distribution in epithelial and endothelial cells after treatment with different concentrations of 

tolvaptan (Figure 25).  Tolvaptan-treatment resulted in a dose-dependent increase in ciliary 

length in renal epithelial cells. The effect was maximal at 0.1 μM and reached a steady-state at 

higher concentrations (Figure 24a, b). In renal epithelial cells, average ciliary length was 

7.05±0.15 μm.  When treated with 0.1 μM tolvaptan, ciliary length increased to 9.34±0.51 μm.  

In vascular endothelial cells, which generally have shorter cilia than epithelial cells, ciliary 

length increased from 3.67±0.06 μm to 7.56±0.14 μm after treatment with tolvaptan. 

 

Both epithelial and endothelial cilia function as mechanosensory organelles by increasing 

intracellular calcium in response to fluid-shear stress4–7.  To test whether the increase in ciliary 

length translated to enhanced mechanosensitivity, cytosolic calcium levels in response to shear 

stress were measured with Fura-2 (Figure 24c & 25).  After baseline measurement, cells were 

subjected to shear stress.  Pre-treatment with tolvaptan significantly enhanced the calcium 

response to fluid flow in both epithelial and endothelial cells (Figure 24d, e).  These results show 

that tolvaptan increases ciliary length and enhances cilia mechanosensitivity.  

 

The cilia are also intertwined with the cell cycle and are usually resorbed during cell division38,39.  

We therefore examined if tolvaptan affected cell division using labeling with propidium iodide, a 

dye that binds stoichiometrically to DNA, to approximate the distribution of cells at different cell 

division stages.  However, tolvaptan did not affect cell division stages in either epithelial or 

endothelial cells (Figure 25).  
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Figure 25. Tolvaptan increases ciliary length in the dose-dependent manner without affecting 
stages of cell division. (a) Ciliary length distribution in renal epithelial LL-CPK1 cells without 
(vehicle control) and with tolvaptan (1 nM to 10 μM) treatment is shown in the histogram. 
Ciliary length (in μm) was plotted against the number of cells (in percent). 100 cells were 
randomly selected and measured from each preparation (N=3). (b) Before Fura-2 experiments, a 
brightfield image was obtained (left panel). Intensity thresholds were applied to create a binary 
layer highlighting cell border. The binary layer was overlaid with the Fura-2 images to create our 
representative images (right panel). (c) Flow cytometry analysis on cells without (vehicle 
control) and with tolvaptan (0.1 μM) treatment was conducted in endothelia and epithelia with 
propidium iodide (PI). Averaged cell counts in each cell division stage are shown in bar graph. 
N=3 in each group and treatment. 
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Figure 26. V2R modulates ciliary length and function. (a) Representative western blot image of 
scrambled control (Ctrl) and V2R-knockdown (KD) cells with vehicle (control), vasopressin (10 
µM) and tolvaptan (0.1 µM) treatments.  (b) Normalized V2R expression level is shown.  
Changes in ciliary length are observed from the phase contrast (side view, c) and 
immunostaining (top view, d) images.  (e) Average ciliary length with two-way ANOVA was 
conducted on the influence of two independent variables i.e., cell type and type of treatment on 
the length of cilia. The cell type and treatment interaction were significant though it did not 
qualify the main effects, F(2, 533) = 5.009, p < 0.01. Two-way ANOVA was followed by post 
hoc analysis with Sidak’s multiple comparison test. (f) Time-lapse images represent intracellular 
calcium level in response to fluid-shear stress.  Color bar indicates intracellular calcium level 
from low (black) to high (red).  Averaged intracellular calcium levels are plotted across time in 
second (s).  Arrows indicate the start of fluid-shear stress.  Corresponding brightfield images are 
shown in Figure 27.  N=3 experiments for each group.  For each N, a minimum of 50 cells were 
analyzed.  * P<0.05, **P<0.001, and ***P<0.0001 compared to the corresponding control 
groups. 
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Vasopressin receptor knockdown modulates ciliary length and function. 

 

To further validate our results, we generated V2R-knockdown LL-CPK1 epithelial cells using 

lentiviral transfection.  It has been reported that receptor activation or inhibition promotes 

receptor down-regulation38,39; thus, V2R expression was examined in cells with or without 

vasopressin (10 µM) or tolvaptan (0.1 µM) treatment for 24 hours (Figure 26a & 27).  V2R 

expression was compared between V2R-knockdown cells and the corresponding scrambled 

control cells (Figure 26b).  Ciliary length was determined in scrambled or V2R-knockdown 

treated cells in combination with addition of saline (control), tolvaptan, or vasopressin in live 

(Figure 26c) and fixed (Figure 26d) cells.  Cilia in V2R-knockdown cells (5.23±0.27 μm) 

appeared shorter than in scrambled control cells (6.11±0.36 μm), but the difference was not 

significant (Figure 26e).  Tolvaptan treatment caused a significant increase in ciliary length of 

both control cells (11.01±0.76 μm) and V2R-knockdown cells (7.67±0.30 μm).  However, the 

increase was significantly less in the V2R-knockdown compared to controls.  Cells treated with 

vasopression displayed a significant increase in ciliary length in scrambled control cells 

(8.13±0.38 μm vs. 6.11±0.36 μm in control), but not in V2R-knockdown cells (6.30±0.25 μm vs. 

5.23±0.27 μm in V2R-knockdown control). 
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Figure 27. V2R knockdown cells show lower expression of receptor. (a) Using shRNA mediated 
silencing of strategy, V2R was knocked-down in LL-CPK1 cells (KD). The expression level of 
V2R was evaluated in response to vehicle (control), vasopressin (10 μM) and tolvaptan (0.1 μM) 
treatments in both scrambled control (Ctrl) and KD cells. Shown are full Western blot of V2R, in 
which the same membrane was reblotted for b-actin. (b) A brightfield image was obtained (left 
panel) to represent cells used in Fura-2 experiments of both scrambled and V2R-knockdown 
cells. Baseline Fura-2 intensity is shown for both cell lines with a binary layer highlighting cell 
border (right panel). 

 

Figure 28.   V2R is localized to primary cilia. (a) Confocal images of renal epithelial from pig 
(LL-CPK1) and dog (IMCD) show localization of V2R (red) at the base of cilia.  Acetylated-a-
tubulin (acet-a-tub) used as ciliary marker is shown in green and nucleus in blue.  Maximum 
intensity projection images from accumulated z-stack for LL-CPK1 (scrambled and V2R-
knockdown), IMCD and endothelial cells are shown in Figure 29 and 30.  (b) Phase contrast 
images represent isolated cilia from scrambled control and V2R-knockdown LL-CPK1 cells.  (c) 
Dot blot indicates the presence of V2R in both isolated-cilia and cell-body extracts. Isolated cilia 
extracts are confirmed by the presence of acetylated-a-tubulin. 

 

 

To investigate the role of V2R-knockdown in fluid-sensing, calcium imaging in response to fluid 

flow was performed.  Although the differences in ciliary length were negligible between the 

V2R-knockdown and control cells, the V2R-knockdown failed to show the characteristic peak of 

calcium influx upon fluid flow (Figure 26f & 27).  Previous work has also shown that the V2R is 
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linked to calcium mobilization in rat IMCD cells, where activation of the V2 receptor results in a 

transient calcium  increase, although the underlying mechanism has not been established40.  

 

Next, immunolocalization was performed to reveal whether V2R localizes to primary cilia 

(Figure 28a).  IMCD cells, which have been shown to contain V2R in the cilium, were used as a 

positive control41,42.  In LL-CPK1, V2R localization was observed throughout the cilium and in 

IMCD cilium V2R was detected in the base of cilium (Figure 28a & 29). V2R-knockdown cells 

showed very little membrane localization of V2R (Figure 29).  Because most endothelial cells 

did not show V2R localization to primary cilia (Figure 29), we only used LL-CPK1 in the 

remainder of our studies. Additionally, LL-CPK1 cells were grown on permeable supports and 

then used for immunolocalization. After scanning Z-stack images, XZ and XY planes were 

reconstructed which showed similar distribution of V2R in the apical and basolateral membrane 

(Figure 30).  
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Figure 29.  V2R is localized to primary cilia in renal epithelial cells. Renal epithelia from control 
LL-CPK1, V2R-knockdown LL-CPK1, IMCD and vascular endothelial cells were examined 
with ciliary marker acetylated-a-tubulin (acet-a-tub; green), V2R (red) and dapi (blue). Z-stack 
of confocal images at 0.1 μm slices were taken, and a maximum intensity projection was 
obtained. Magnified view of single cell showing V2R (red) localization in the cilium (green) are 
on the rightmost panel. 
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Figure 30.  Apical and basolateral distribution of V2R in renal epithelial cells. Polarized LL-
CPK1 cells grown on permeable support were examined with ciliary marker acetylated-a-tubulin 
(acet-a-tub; green), V2R (red) and dapi (blue). Z-stack of confocal images at 0.1 μm increments 
were taken to create XZ and YZ axis plane. Apical and basal sides are labeled in the XZ view. 
The XY view shows a single focused plane of the cilia from the z-stack. 

 

To further confirm the presence of V2R in the cilia, primary cilia were isolated using shear 

stress43,44.  Isolated cilia from scrambled and V2R-knockdown cells were verified with a 

brightfield microscope (Figure 28b).  Due to a low concentration of total protein collected in the 

isolated cilia extract, a dot blot was used (Figure 28c).  The acetylated-a-tubulin blot was to 

indicate the purity of our cilia lysate and the corresponding V2R blot established that the V2R 

was associated with the cilia. 
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Figure 31.   Adenylyl cyclase isoforms are differentially expressed to cilia in different cell lines. 
Adenylyl cyclase-3 (AC3; red) is localized to cilia in renal epithelial (LL-CPK1 and IMCD) and 
vascular endothelial (ET) cells (Figure 32for an additional LL-CPK1 image).  Adenylyl cyclase-
5/6 (AC5/6; red) is localized to cilia in IMCD and ET cells, but not in LL-CPK1.  Acetylated-�-
tubulin (acet-�-tub) used as ciliary marker is shown in green and nucleus in blue.  Additional 
images for other AC isoforms are shown in Supplementary Figure S5. 

 

 

Primary cilia are cAMP responsive microdomain. 

V2R is a Gs-coupled GPCR, which activates AC and, thereby, increases intracellular cAMP 

levels45,46. AC3 has been reported to localize to neuronal primary cilia47,48, whereas AC5/6 are 

expressed in primary cilia of mouse renal epithelial and LL-CPK1 cells49,50.  We analyzed AC 

expression in different cell lines and observed a differential expression pattern between the 

different AC isoforms (Figure 32).  AC5/6 was not localized in cilia of LL-CPK1 cells, although 
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it was observed in IMCD and endothelial cilia (Figure 31).  In contrast, AC3 was localized in 

cilia of LL-CPK1, IMCD, and endothelial cells (Figure 31 & 32). 

 

 

Figure 32.  Among adenylyl cyclase (AC) isoforms-2, 3, 4, 7, 8 and 9 only AC3 is localized to 
the primary cilia of renal LL-CPK1 cells. (a) AC isoforms were examined for their ciliary 
immuno-localization. The first column of images shows AC isoforms (red) followed by ciliary 
marker acetylated-a-tubulin (acet-a-tub; green) and nucleus marker (merged; blue). (b) LL-
CPK1 cells were examined with AC3 (red), ciliary marker acetylated-a-tubulin (acet-a-tub; 
green), and dapi (blue). Z-stack images at 0.1 μm slices were taken and compiled to construct a 
2D overlay, XZ and YZ axis views. 
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Figure 33. Vasopressin mediates cAMP signaling in cilia. Representative time-lapse images of 
1/cADDis, mCherry channels and Ratio (mCherry/cADDis) with their corresponding line graphs 
showing cAMP levels in response to vasopressin (AVP) in (a) scrambled and (b) V2R-
knockdown cells. Color bar on the left indicates cAMP level from low (black) to high (green) for 
1/cADDis channel. cAMP level from low (black) to high (yellow) are shown on the right color 
bar for the ratio images. Corresponding individual raw traces (red) and average signal (blue) are 
plotted in line graphs for 1/cADDis, mCherry and ratio signals in the cilioplasm and cytoplasm.  
Arrows indicate stimuli.  N=4 for each group. 
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Figure 34. Forskolin increases cAMP level in cilioplasm and cytoplasm. Representative time-
lapse images of 1/cADDis, mCherry channels and Ratio (mCherry/cADDis) with their 
corresponding line graphs showing cAMP levels in response to forskolin (FSK) in (a) scrambled 
and (b) V2R-knockdown cells. Color bar on the left indicates cAMP level from low (black) to 
high (green) for 1/cADDis channel. cAMP level from low (black) to high (yellow) are shown on 
the right color bar for the ratio images. Corresponding individual raw traces (red) and average 
signal (blue) are plotted in line graphs for 1/cADDis, mCherry and ratio signals in the cilioplasm 
and cytoplasm.  Arrows indicate stimuli.  N=4 for each group. 
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Figure 35. Tolvaptan increases cilioplasmic cAMP. Representative time-lapse images of 
1/cADDis, mCherry channels and Ratio (mCherry/cADDis) with their corresponding line graphs 
showing cAMP levels in response to tolvaptan (Tvp) in (a) scrambled, (b) V2R-knockdown, and 
(c) verapamil-treated cells. Color bar on the left indicates cAMP level from low (black) to high 
(green) for 1/cADDis channel. cAMP level from low (black) to high (yellow) are shown on the 
right color bar for the ratio images. Corresponding individual raw traces (red) and average signal 
(blue) are plotted in line graphs for 1/cADDis, mCherry and ratio signals in the cilioplasm and 
cytoplasm.  Arrows indicate stimuli.  N=4 for each group. 
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Figure 36. Flow decreases cilioplasmic cAMP level. Representative time-lapse images of 
1/cADDis, mCherry channels and Ratio (mCherry/cADDis) in response to fluid-flow (1.0 
dyne/cm2) after treatment with (a) vehicle control, (b) 0.1 µM tolvaptan (Tvp) or (c) 10 µM 
vasopressin (AVP). Color bar on the left indicates cAMP level from low (black) to high (green) 
for 1/cADDis channel. cAMP level from low (black) to high (yellow) are shown on the right 
color bar for the ratio images. Corresponding individual raw traces (red) and average signal 
(blue) are plotted in line graphs for 1/cADDis, mCherry and ratio signals in the cilioplasm and 
cytoplasm.  Arrows indicate stimuli.  N=4 for each group. 

 

Because cAMP measurement has traditionally been performed with a solid-phase enzyme 

immunoassay, we used this technique to measure cAMP levels after tolvaptan treatment or 



www.manaraa.com

 

107 
 

induction of fluid-flow. Neither fluid flow nor tolvaptan treatment changed the cAMP levels, 

although a forskolin response was observed in both scrambled and V2R-knockdown cells (Figure 

37).  However, an immunoassay does not allow us to distinguish cilioplasmic from cytoplasmic 

cAMP changes.  To monitor changes in ciliary cAMP levels, we used the ciliary-targeted cAMP 

sensor 5HT6-mCherry-cADDis.  We first confirmed that the kinetics between cilia-specific 

(5HT6-mCherry-cADDis) and cytosolic (cAMP-cADDis) reporters did not alter (Figure 37).   

 

 

Figure 37. Global cAMP levels were measured using colorimetric competitive immunoassay, 
and 5HT6-mCherry-cADDis and cAMP-cADDis show similar dose response profiles. (a) Cell 
lysates collected from scrambled control and V2R-knockdown populations were used for cAMP 
quantification under different treatments (0.1 μM tolvaptan or Tvp; 10 μM vasopressin or AVP). 
Vehicle control with PBS (containing 0.005% DMSO) was used as a basal cAMP level. Fluid-
shear stress was induced with 1.0 dyne/cm2 for 5 minutes prior to the lysate collection. N=7 for 
each group. ***; p<0.001 compared to basal cAMP level. After expression of either 5HT6-
mCherry-cADDis or cAMP-cADDis was confirmed in LL-CPK1 cells, cells were treated with 
adenylate cyclase inhibitor SQ22536 (10 μM) for 24 hours to deplete intracellular cAMP. The 
cAMP reporter profiles were examined with different concentrations of cell permeable cAMP 
analog 8-Br-2’-O-Me-cAMP-AM (1 nM to 1 mM; 10-9 to 10-3 M). Changes in intracellular 
cAMP concentration are shown in (b) pseudocolored images after background subtraction and 
used to generate (c) dose-response curves. N=3 for each group. 

Using imaging setup51, we were able to monitor both changes in the cytoplasmic and 

cilioplasmic cAMP levels.  Vasopressin (10 µM) elicited an increase in cAMP levels in the 

cilium and the cell body (Figure 33a).  In the V2R-knockdown cells, this response was absent in 
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both the cytoplasm and the cilioplasm (Figure 33b).  Forskolin (5 µM) also increased cAMP 

levels in the cytoplasm and cilioplasm of scrambled control and V2R-knockdown cells (Figure 

34).  Tolvaptan (0.1 µM) induced an increase cilioplasmic cAMP levels, but no significant 

change was observed in the cytoplasm (Figure 35a).  Interestingly, tolvaptan also increased 

cilioplasmic cAMP in the V2R-knockdown cells (Figure 35b).  To exclude potential involvement 

of extracellular calcium influx and the roles of calcium-regulated ACs, cells were preincubated 

with calcium channel blocker verapamil (2 µM) before being challenged with tolvaptan. 

Blocking verapamil-sensitive calcium channels had no effect on ciliary cAMP increase nor 

impacted tolvaptan-induced ciliary length increase (Figure 35c, Figure 38).  In response to flow, 

the cilioplasmic cAMP underwent a significant decrease beyond the basal level (Figure 36a).  

The same response was not observed in the cytoplasm, where the cAMP remained at the basal 

level.  Neither vasopressin (10 µM) nor tolvaptan (0.1 µM) affected the flow-induced repression 

of cilioplasmic cAMP (Figure 36b, c).  In the cytoplasm, cAMP levels remained stable during 

flow.  Taken together, certain stimuli modulated cAMP response differentially between 

cilioplasm and cytoplasm (Figure 39), which supports the idea of the cilium being a distinct 

cAMP microdomain.   

 

Figure 38.  Calcium channel blocker, verapamil, does not affect increase in ciliary length 
induced by tolvaptan treatment. (a) Ciliary length distribution (in μm) in response to vehicle 
(control) or tolvaptan (0.1 μM) after preincubation for 10 min in vehicle or verapamil (2 μM) 
was plotted against the number of cells (in percent). About 150 cells were randomly selected and 
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measured from each preparation (N=3). (b) Corresponding bar graphs show ciliary length 
averages. ****P<0.00001. c) Representative immunostaining images are shown where cilia are 
in green (acetylated-a-tubulin) and nucleus in blue. 
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Discussion 

Activation of V2R induces a GPCR signaling cascade, resulting in an intracellular cAMP 

increase.  In turn, cAMP-dependent protein kinase (PKA) and other downstream signaling 

molecules are activated52,53.  Ultimately, this leads to the insertion of AQP2 into the apical 

membrane54, increasing water reabsorption in the kidney collecting duct and enhancing urinary 

concentration in the thick ascending limb.  Thus, the overall V2R function is to regulate body 

fluid homeostasis18.  

 

Using PCK rats (orthologous to human PKD)26 crossed with Brattleboro rats (without circulating 

vasopressin)27, Wang et. al. found that vasopressin is a powerful modulator of cystogenesis23.  

The PCK AVP-/- rats have lower renal cAMP level and show a marked reduction in renal cysts.  

Likewise, other animal studies show that inhibition of vasopressin-mediated signaling protects 

against cystogenesis24,25.  The preclinical results support the idea of pursuing V2R antagonists 

like tolvaptan as a prospective treatment for PKD.  Clinical data have also shown positive results 

with tolvaptan significantly reducing the rate of total kidney volume increase and slowing the 

estimated glomerular filtration rate (eGFR) decline in patients28–32.  In April 2018, tolvaptan, 

under the trade name Jynarque was approved by the FDA to slow kidney function decline in 

adults with PKD. As a note, tolvaptan has been previously approved in 2008 by the FDA, 

marketed as Samsca, for treatment and prevention of hyponatremia55,56.  Due to the potential of 

liver injury caused by tolvaptan, there is an FDA approved Risk Evaluation and Mitigation 

Strategy (REMS) program that needs to be followed when tolvaptan is prescribed to PKD 

patients57,58.  The REMS include requirement of frequent tests for blood bilirubin-total (BT), 

alanine and aspartate aminotransferases (ALT and AST) levels to evaluate liver toxicity.  

Discontinuation of treatment can mitigate the hepatotoxic effects of tolvaptan when caught early 

hence emphasizing the requirement of frequent testing of liver function biomarkers57,59.    

 

In our study, we examined the effect of tolvaptan on ciliary function because defects in ciliary 

function have been associated with PKD.  Ciliary dysfunction that prevents sensation of fluid-

flow in renal epithelia i.e. calcium fluxes generated in response to fluid-flow, contributes to cyst 

formation6,60.  Kidney-specific inactivation of Kif3a, a ciliogenic gene, in newborn mice resulted 

in the loss of primary cilia and produced kidney cysts61.  The loss of cilia resulted in aberrant 
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planar cell polarity as measured by the orientation of mitotic spindles in relation to the 

longitudinal axis of the collecting ducts.  When complemented with increased rates of cell 

proliferation, like in cases of acute renal injury, the aberrant planar cell polarity randomizes 

orientation of cell division leading to tubular dilatation and kidney cyst formation62. Previous 

studies have shown that the ability of cilia to sense fluid-flow correlates with the ciliary length63.  

Upon treatment with tolvaptan, ciliary length was increased in both epithelial and endothelial 

cells.  In turn, the mechanosensitivity of the cells was increased, as shown by cytosolic calcium 

measurements in response to fluid-flow.  Endothelial cells displayed a more pronounced 

amplification of the calcium signal, which could be attributed to the more pronounced increase 

of ciliary length after tolvaptan treatment compared to epithelial cells.  

 

 

Figure 39. Cilioplasmic and cytoplasmic cAMP levels are differentially regulated. Peak cAMP 
increase in response to each stimulus is summarized in the bar graph for (a) cilioplasm and (b) 
cytoplasm.  N=4 experiments for each group. * P<0.05, **P<0.001, and ***P<0.0001 compared 
to the baseline (BL) level prior to stimulus; AVP=arginine vasopressin; FSK=forskolin; 
Tvp=tolvaptan; Ctrl=control; Ver=verapamil. (c) Vasopressin receptor type-2 (V2R) is localized 
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to primary cilia in renal epithelia, and V2R activation with vasopressin increases adenylyl 
cyclase (AC) activity.  Tolvaptan but not vasopressin elicits a cAMP increase in V2R-
knockdown in primary cilium.  Unlike tolvaptan which shows cilia-specific cAMP response, AC 
activator (forskolin) and vasopressin elicit cAMP responses in both cilioplasm and cytoplasm.  
Cilioplasmic but not cytoplasmic cAMP signaling is repressed below basal levels when cilia 
bend by fluid-flow.  These responses indicate that a cilium may function as a distinct cAMP 
microdomain, independent from cytoplasmic cAMP. 

 

Tolvaptan is a V2R antagonist, thus a V2R-knockdown would be expected to have similar 

effects as tolvaptan treatment.  However, our results indicate that tolvaptan increases ciliary 

length, whereas V2R-knockdown does not affect ciliary length. Furthermore, tolvaptan also 

increases ciliary length in V2R-knockdown cells. This could be due to the incomplete deletion of 

V2R, which allows tolvaptan to act through V2R albeit at a lower magnitude, or the action of 

tolvaptan is independent of V2R. To this end, we analyzed localization of V2R receptors and 

observed similar V2R presence in apical and basolateral membranes. We see V2R expressed 

throughout the cilium in LL-CPK1, as also shown by Raychowdhury et. al.49, and in the basal 

bodies of primary cilia in IMCD renal epithelial cells.  The exact mechanism by which tolvaptan 

increases ciliary length and function is not clear at present.  However, our data indicate that such 

a mechanism very likely involves ciliary cAMP.  The most recent study indicates that tolvaptan 

can inhibit potassium (K+) channels64.  Thus, the potential of multiple targets or mechanisms of 

action of tolvaptan remains a possibility. 

 

We performed functional studies to compare cAMP levels in V2R-knockdown cells in response 

to V2R agonist and antagonist.  In our cilia imaging experiments, vasopressin, forskolin and 

tolvaptan increased cilioplasmic cAMP levels.  Vasopressin stimulated cilioplasmic cAMP 

increases were absent in V2R-knockdown cells, whereas tolvaptan elicited a cilioplasmic cAMP 

increase independent of V2R.  We propose that while vasopressin requires the presence of V2R 

to engage signaling in the cilium, tolvaptan acts in a V2R-independent manner on ciliary 

signaling. 

 

Previous studies have shown that the ciliary V2R is coupled with a functional AC that increases 

cAMP levels in cilia upon vasopressin binding49. This is particularly interesting since localized 

cAMP responses could regulate ciliary function without stimulating global increases in cAMP 
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that would affect cell proliferation in cystic epithelia.  V2R activation stimulates AC activity and 

studies have shown AC isoform 5/6 to be present in the cilia49,50.  To verify this and discover if 

any other isoforms are present in the cilium, we immunostained for all AC isoforms.  To our 

surprise we found AC3 in the cilia of LL-CPK1 cells, but there was no cilia localization of 

AC5/6 as previously reported49,50.  Of note is that AC3 localization has been reported in neuronal 

cilia47,48.  AC3 is one of the three CaM-sensitive AC isoforms although the effect is not as 

pronounced as seen in CaM activation of AC1 and AC8.  Further, it is likely that AC3 is 

conditionally activated by calcium/ calmodulin (CaM) and also by PKC but inhibited by 

calcium/calmodulin-dependent protein kinase II (CaMK-II)65–67.  Studies have shown CaM 

localization at the basal body as well as throughout the cilia in a punctate pattern68.  In a 2011 

study, Rothschild et. al. showed that CaMK-II is present in zebrafish cilia69.  Morpholino 

mediated suppression of CaMK-II in zebrafish embryos induced hydrocephaly and pronephric 

cysts, and destabilized cloacal cilia.  Furthermore, they establish that PKD2 and CaMK-II 

deficiencies are synergistic, where CaMK-II is a crucial effector of PKD2 Ca²⁺ required for 

morphogenesis of the pronephric kidney and stabilization of primary cloacal cilia. This suggests 

that CaMK-II might play a key role in ciliary function and response to physiological stimuli.  

 

Cyclic AMP signaling has the potential to regulate various pathways and cell functions but when 

restricted in a compartmentalization model, cAMP fluxes can result in specific responses.  Based 

on our cAMP measurements, we noted that changes in cilioplasmic cAMP is independent from 

cytoplasm.  We also found that while vasopressin and forskolin increase both cilioplasmic and 

cytoplasmic cAMP, tolvaptan and fluid-flow result in a discrete change only in cilioplasmic 

cAMP.  In response to flow, the cilioplasmic cAMP underwent a significant decrease beyond 

basal levels.  Pre-treatment with either vasopressin or tolvaptan does not affect the flow-induced 

cAMP decrease in the cilia, indicating the complexity of cAMP signaling within cilioplasm.  

These results support the idea that the cAMP signaling occurs in a compartmentalized manner 

such that numerous signaling pathways can utilize this biochemical signal and still achieve 

distinct cellular effects (Figure 39). 

 

The concept of cAMP being synthesized in specific microdomains and spatially regulated is of 

growing interest.  Studies with membrane microdomain specific sensors show that in addition to 
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the local phosphodiesterases, which control the levels of cAMP, there are specific arrangements 

of the cAMP signaling components70–73.  Scaffold proteins, such as A-kinase anchoring proteins 

(AKAPs) and perhaps others, bring together GPCR, AC isoforms, phosphodiesterases and 

protein kinase A to create signaling complexes that regulate spatially constricted cAMP signaling 

cascades.  The small cilia organelle enables enrichment of proteins with respect to the rest of the 

plasma membrane and may also restrict diffusion of second messengers with a transition zone 

that separates the cilioplasm from the cytoplasm74–78. These features make the cilia an effective 

signaling microdomain with the ability to generate a high local concentration of second 

messengers and effectors proteins.  Studies have shown the presence of GPCR, AC isoforms and 

cAMP-mediated pathways present in the cilium49,79. It is plausible to contemplate that cAMP 

could play a role in the dynamic modulation of the cilia, which is linked to its functional 

efficiency. 

 

In conclusion, we find that tolvaptan can modulate ciliary length and function.  Interestingly, 

tolvaptan does not fit the mold of a traditional antagonist, at least not within the ciliary structure.  

The prospect of tolvaptan working through an off-target effect in the cilia might open new 

strategies targeting the cilia and PKD relationship.  In studying effects V2R/tolvaptan in 

cilioplasmic cAMP, our data further establish the cilium as a cAMP microdomain that responds 

to physiologically relevant stimulus.
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Conclusion 

Our knowledge of the primary cilium and its role in mechanotransduction among other functions 

has been advanced in the past decades. As a critical sensory organelle, the importance of cilium 

is highlighted by the multi-organ diseases that arise due to defective or absent cilia. Ciliary 

transduction of fluid flow stimulus regulates biochemical reactions, molecular responses, gene 

expressions regulating tissue development and physiological function. Here we covered 

approaches to study ciliary signaling and pathways that modulate mechanosensory primary cilia. 

Our aim is to be able to determine whether signals are arising from the cilioplasm or cytoplasm. 

This has been done using a side view modality, coupled with a high spatial-temporal resolution 

and high sensitivity fluorescent sensor. With our cilia targeted ratio-metric sensor and single cilia 

imaging we shed light on the dynamics of cAMP changes in the primary cilium. This is 

motivated by the involvement of cilia and aberrant signaling in ciliopathies since defects in the 

structure of cilia or protein complexes located in the primary cilia cause ciliopathies. 

 

Along with the mechanical sensory functions, we tested whether the primary cilium has a role in 

sensing biochemical cues, more specifically its role in transducing pH changes of the 

extracellular milieu. We compared acidosis response using vascular endothelial cells in 

comparison to cilia-less Tg737 cells. This allowed us to observe potential pathways that might be 

differentially regulated by the presence of the cilium. Using mitogen-activated protein kinase 

(MAPK) activation markers, we assessed acid-activation of p38- and ERK1/2-mediated 

signaling pathways, which were involved in regulating ion transport for acid-base homeostasis in 

endothelia. We established that the primary cilium influences pH sensing threshold with cilia-

less Tg737 requiring farther acidic condition to activate the same suite of MAPK proteins. 

However, intracellular pH homeostasis is not significantly different between the wild-type and 

Tg737 cells with pH recovery occurring through a K+-dependent process. Nonetheless, cells 

developed longer cilia when challenged with an acidic environment. It is interesting to note that 

cilia length has been speculated to increase in response to injury or environmental insults. 

Endothelial cilia, although having effect on acid-activated MAPK activation as well as 

modulating its length in response to acidosis, are unlikely to be the sole acid sensing organelle. 
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Our results also highlighted the limitation of our study in ciliary pH sensing since inherent 

mechanisms related to pH homeostasis could be disrupted in Tg737 cells. IFT88 protein, which 

is deleted in Tg737 cells, are involved in transport of proteins between cilium and cell body. 

IFT88 is not only limited to transporting but also is localized in proliferating mammalian cells at 

the centrosome and participates in cell cycle progression. Upon cilia resorption, the ciliary 

proteins get redistributed and IFT88 proteins become associated with the proximal end of 

centrioles. Inhibition of IFT88 expression causes cell-cycle progression from G1 to S and G2/M 

phases. Therefore, in order to bypass possible cell cycle induced effects by IFT88 deletion, either 

mechanical or chemical disruption of the cilium can be used to test ciliary pH sensing. Chloral 

hydrate has been used to de-ciliate cells but can also increase cell size, disrupt the cytoskeleton 

and has an inhibitive effect on mitosis. However, we are encouraged by other studies that have 

found acid stimulated ion channels (ASICs) in olfactory cilia as well as a mechanosensation 

related function for ASIC neuronal cells. Loss of ASIC in mice models reduced the sensitivity of 

a mechanoreceptor responding to noxious pinch. The ASIC knockout mice had decreased 

response to acid- and noxious heat stimuli. This leads to the possibility to study ASIC isoforms 

distribution in the cilia and tease out the nuanced contribution of primary cilia in acid sensation.  

 

As a sensory organelle, the cilium utilizes secondary messengers such as calcium and cAMP to 

transmit stimuli and effect changes in the cell. cAMP signaling has the potential to regulate 

various pathways and cell functions. cAMP fluxes can initiate specialized responses with the 

help of cAMP pathway modulators organized in clusters. This is possible with scaffold proteins 

that bring together G-protein coupled receptor (GPCR), adenylyl cyclase (AC) isoforms, 

phosphodiesterases and protein kinase A to create signaling complexes dedicated to fine tune 

cAMP signaling cascades. Our interest in ciliary cAMP signaling was started with tolvaptan, a 

prospective drug for polycystic kidney disease, which acts on a GPCR located in the cilia and 

effects ciliary structure/function. After observation of tolvaptan induced ciliary length increase 

and functional enhancement, we investigated the ciliary vasopressin receptor 2 (V2R) signaling 

cascade. V2R, the target of tolvaptan, is activated by its natural ligand vasopressin leading to AC 

activity thus cAMP increase. With the help of targeted fluorescent sensors, our model of 

localized ciliary cAMP responses that regulates cilia structure and function was strengthened. 

Tolvaptan increased cilia specific cAMP and this occured without stimulating global increases in 
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cAMP which could increase cell proliferation in cystic epithelia. Vasopressin and forskolin 

increased cilioplasmic and cytoplasmic cAMP while treatment with tolvaptan resulted in a 

discrete cAMP increase restricted to the cilioplasm. Demonstrating its function as a flow sensor, 

we found that the cilioplasmic cAMP is decreased beyond basal levels when fluid flow is 

applied. These results support compartmentalized cAMP signaling occurring in the cilium, 

independent from the cytosol. 

 

Another plausible idea would be that tolvaptan acts as a partial agonist by itself although 

numerous studies that have shown tolvaptan dampens vasopressin mediated cAMP increase. An 

explanation could be receptor-based functional selectivity or “protean” agonism. As an example, 

dichloroisoproterenol acts stochastically as either a weak partial agonist or a weak inverse 

agonist for b2-adrenergic receptor. However, after agonist-induced desensitization, 

dichloroisoproterenol switches fully to an inverse agonist. Chidiac P et al. in their study show 

that the initial state of the receptor can determine whether a ligand behaves as a partial agonist or 

an inverse agonist (Chidiac, Nouet, & Bouvier, 1996). In our case, a possible scenario in vivo 

might be that vasopressin induces desensitization of V2R affects tolvaptan interaction with the 

receptor and causes it to behave as an inverse agonist.   

 

Studies have shown AC isoforms to be present in the cilia (Bishop, Berbari, Lewis, & Mykytyn, 

2007; Raychowdhury et al., 2009; Q. Wang et al., 2017; Z. Wang et al., 2009)  and we find 

ciliary localization of AC3 in LL-CPK1 cells. AC3 is one of the three Calmodulin(CaM)-

sensitive AC isoforms and is likely to be conditionally activated by Ca2+/ CaM as well as PKC. 

Studies have shown CaM localization at the basal body as well as throughout the cilia (Otto et 

al., 2005). All these studies show how input synchronization of calcium and its binding partners 

with ciliary AC might affect the final cAMP levels. Animas models relevant to our study such as 

V2R deficient or AC KO mice show a high mortality after birth. The V2R genes are localized to 

the long arm of the X chromosome and loss of V2R function interferes with water uptake in the 

renal collecting duct system, polyuria accompanied by excessive thirst. The large output of urine 

can lead to severe hypernatremia and dehydration if water intake is not maintained. Adult 

females (V2R+/–) which have a functioning copy of V2R mice displayed a reduced urine-

concentrating ability, polyuria, and polydipsia. AC3 KO mice that survive suffer from anosmia, 
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cognitive failures and obesity but have no other perturbations of peripheral organs such as 

vessels, bone or cartilage. One hypothesis is that other isoforms from the AC pool might make 

up for the loss of AC3. Although these animal models are plagued by the induced disabilities 

these might help in studying the interrelationship between the cilia localized proteins, ciliary 

characteristics and development in vivo. 

 

The cilium is an effective signaling microdomain with the ability to generate a high local 

concentration of second messengers and effectors proteins. Other structural features such as the 

transition zone of the cilium also restrict biomolecules to the cilium but still activate downstream 

effectors that have cell-wide consequences. Our studies indicate that sensory function of the 

cilium involves cAMP pathway in regulating ciliary structure and function where the cilium acts 

as a cAMP compartment that responds to physiological stimulus. Overall, it is important to 

understand the complex molecular composition of the cilia, appreciate the diverse functions 

attributed to it and the pathways contained within it.  
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